1,962 research outputs found

    Coordinated optimization of visual cortical maps : 2. Numerical studies

    Get PDF
    In the juvenile brain, the synaptic architecture of the visual cortex remains in a state of flux for months after the natural onset of vision and the initial emergence of feature selectivity in visual cortical neurons. It is an attractive hypothesis that visual cortical architecture is shaped during this extended period of juvenile plasticity by the coordinated optimization of multiple visual cortical maps such as orientation preference (OP), ocular dominance (OD), spatial frequency, or direction preference. In part (I) of this study we introduced a class of analytically tractable coordinated optimization models and solved representative examples, in which a spatially complex organization of the OP map is induced by interactions between the maps. We found that these solutions near symmetry breaking threshold predict a highly ordered map layout. Here we examine the time course of the convergence towards attractor states and optima of these models. In particular, we determine the timescales on which map optimization takes place and how these timescales can be compared to those of visual cortical development and plasticity. We also assess whether our models exhibit biologically more realistic, spatially irregular solutions at a finite distance from threshold, when the spatial periodicities of the two maps are detuned and when considering more than 2 feature dimensions. We show that, although maps typically undergo substantial rearrangement, no other solutions than pinwheel crystals and stripes dominate in the emerging layouts. Pinwheel crystallization takes place on a rather short timescale and can also occur for detuned wavelengths of different maps. Our numerical results thus support the view that neither minimal energy states nor intermediate transient states of our coordinated optimization models successfully explain the architecture of the visual cortex. We discuss several alternative scenarios that may improve the agreement between model solutions and biological observations

    Coordinated optimization of visual cortical maps : 1. Symmetry-based analysis

    Get PDF
    In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this optimization hypothesis is particularly demanded by recent evidence that the functional architecture of orientation columns precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization principle from the biological data, the optimization approach to explain cortical functional architecture raises the following questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and conversely what can be learned about a hypothetical underlying optimization principle from observations on map structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in general? To answer these questions we developed a general dynamical systems approach to the combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference. From basic symmetry assumptions we obtain a comprehensive phenomenological classification of possible inter-map coupling energies and examine representative examples. We show that each individual coupling energy leads to a different class of OP solutions with different correlations among the maps such that inferences about the optimization principle from map layout appear viable. We systematically assess whether quantitative laws resembling experimental observations can result from the coordinated optimization of orientation columns with other feature maps

    Illustrated argument for CT-scanning a whole car for the forensic investigation of projectile holes, defects, fragments and possible trajectories

    Full text link
    Contemporary documentation of a car with bullet defects after a shooting incident can secure the usual tracks and gunshot residue, take photographs, and use trajectory rods and probes. Since the advent of the ”XXL-CT -Scanner” (Fraunhofer Institute, Germany), we have wondered if the advantages of volume scanning CT, already noted for forensic pathology, could be applied to cars. To this end, we damaged a small 3D-printed car model with an electric drill and added CT -dense material with a soldering iron, simulating linearly configured defect morphologies with metal particles. This model was CT -scanned and the resulting data visualized to illustrate how these visualizations can support reconstructive visualization of trajectories. Performing a real XXL-CT scan of a bullet-riddled car requires extensive preparation, transportation, and other logistical measures that are costly and time-consuming. Nonetheless, we suggest that this is a worthwhile research direction to explore

    Pinwheel stabilization by ocular dominance segregation

    Full text link
    We present an analytical approach for studying the coupled development of ocular dominance and orientation preference columns. Using this approach we demonstrate that ocular dominance segregation can induce the stabilization and even the production of pinwheels by their crystallization in two types of periodic lattices. Pinwheel crystallization depends on the overall dominance of one eye over the other, a condition that is fulfilled during early cortical development. Increasing the strength of inter-map coupling induces a transition from pinwheel-free stripe solutions to intermediate and high pinwheel density states.Comment: 10 pages, 4 figure

    Intravitreal ranibizumab versus isovolemic hemodilution in the treatment of macular edema secondary to central retinal vein occlusion: Twelve-month results of a prospective, randomized, multicenter trial

    Get PDF
    PURPOSE This is a prospective, randomized, multicenter, investigator-initiated trial to evaluate the 12-month effectiveness of isovolemic hemodilution (IH) with prompt versus deferred intravitreal injections (IVI) of ranibizumab 0.5 mg for the treatment of macular edema secondary to early central retinal vein occlusion (CRVO). METHODS Eyes with macular edema due to CRVO having occurred not more than 8 weeks previously received either monthly ranibizumab IVI in combination with IH (group I, n = 28) or IH alone (group II, n = 30). From month 2 to 12, the patients in both groups could be treated with monthly intravitreal ranibizumab. The main outcome variables were gain of visual acuity and the course of central retinal thickness as measured with optical coherence tomography. RESULTS At 12 months, eyes in group I on average gained +28.1 (±19.3) letters compared to +25.2 (±20.9) letters in group II (p = 0.326). This result was achieved with significantly fewer injections in group II. Additionally, 30% of the eyes in group II did not need ranibizumab IVI during the 12 months of the trial. CONCLUSION Ranibizumab IVI in addition to IH proved to be highly effective in increasing visual acuity and reducing macular edema secondary to CRVO. Initial IH in early CRVO may be a first treatment option in patients anxious about IVI

    Genome and low-iron response of an oceanic diatom adapted to chronic iron limitation

    Get PDF
    ABSTRACT: BACKGROUND: Biogeochemical elemental cycling is driven by primary production of biomass via phototrophic phytoplankton growth, with 40% of marine productivity being assigned to diatoms. Phytoplankton growth is widely limited by the availability of iron, an essential component of the photosynthetic apparatus. The oceanic diatom Thalassiosira oceanica shows a remarkable tolerance to low-iron conditions and was chosen as a model for deciphering the cellular response upon shortage of this essential micronutrient. RESULTS: The combined efforts in genomics, transcriptomics and proteomics reveal an unexpected metabolic flexibility in response to iron availability for T. oceanica CCMP1005. The complex response comprises cellular retrenchment as well as remodeling of bioenergetic pathways, where the abundance of iron-rich photosynthetic proteins is lowered, whereas iron-rich mitochondrial proteins are preserved. As a consequence of iron deprivation, the photosynthetic machinery undergoes a remodeling to adjust the light energy utilization with the overall decrease in photosynthetic electron transfer complexes. CONCLUSIONS: Beneficial adaptations to low-iron environments include strategies to lower the cellular iron requirements and to enhance iron uptake. A novel contribution enhancing iron economy of phototrophic growth is observed with the iron-regulated substitution of three metal-containing fructose-bisphosphate aldolases involved in metabolic conversion of carbohydrates for enzymes that do not contain metals. Further, our data identify candidate components of a high-affinity iron-uptake system, with several of the involved genes and domains originating from duplication events. A high genomic plasticity, as seen from the fraction of genes acquired through horizontal gene transfer, provides the platform for these complex adaptations to a low-iron world

    Modeling the Dust Properties of z ~ 6 Quasars with ART^2 -- All-wavelength Radiative Transfer with Adaptive Refinement Tree

    Full text link
    The detection of large quantities of dust in z ~ 6 quasars by infrared and radio surveys presents puzzles for the formation and evolution of dust in these early systems. Previously (Li et al. 2007), we showed that luminous quasars at z > 6 can form through hierarchical mergers of gas-rich galaxies. Here, we calculate the dust properties of simulated quasars and their progenitors using a three-dimensional Monte Carlo radiative transfer code, ART^2 -- All-wavelength Radiative Transfer with Adaptive Refinement Tree. ART^2 incorporates a radiative equilibrium algorithm for dust emission, an adaptive grid for inhomogeneous density, a multiphase model for the ISM, and a supernova-origin dust model. We reproduce the SED and dust properties of SDSS J1148+5251, and find that the infrared emission are closely associated with the formation and evolution of the quasar host. The system evolves from a cold to a warm ULIRG owing to heating and feedback from stars and AGN. Furthermore, the AGN has significant implications for the interpretation of observation of the hosts. Our results suggest that vigorous star formation in merging progenitors is necessary to reproduce the observed dust properties of z~6 quasars, supporting a merger-driven origin for luminous quasars at high redshifts and the starburst-to-quasar evolutionary hypothesis. (Abridged)Comment: 26 pages, 22 figures, accepted by ApJ. Version with full resolution images is available at http://www.cfa.harvard.edu/~yxli/ARTDUST/astroph0706.3706.pd

    RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-kappa B pathway

    Get PDF
    The RNA-binding protein RC3H1 (also known as ROQUIN) promotes TNF alpha mRNA decay via a 3'UTR constitutive decay element (CDE). Here we applied PAR-CLIP to human RC3H1 to identify similar to 3, 800 mRNA targets with 416, 000 binding sites. A large number of sites are distinct from the consensus CDE and revealed a structure-sequence motif with U-rich sequences embedded in hairpins. RC3H1 binds preferentially short-lived and DNA damage-induced mRNAs, indicating a role of this RNA-binding protein in the post-transcriptional regulation of the DNA damage response. Intriguingly, RC3H1 affects expression of the NF-kappa B pathway regulators such as I kappa B alpha and A20. RC3H1 uses ROQ and Zn-finger domains to contact a binding site in the A20 30UTR, demonstrating a not yet recognized mode of RC3H1 binding. Knockdown of RC3H1 resulted in increased A20 protein expression, thereby interfering with I kappa B kinase and NF-kappa B activities, demonstrating that RC3H1 can modulate the activity of the IKK/NF-kappa B pathway

    Coordinated optimization of visual cortical maps (I) Symmetry-based analysis

    Get PDF
    In the primary visual cortex of primates and carnivores, functional architecture can be characterized by maps of various stimulus features such as orientation preference (OP), ocular dominance (OD), and spatial frequency. It is a long-standing question in theoretical neuroscience whether the observed maps should be interpreted as optima of a specific energy functional that summarizes the design principles of cortical functional architecture. A rigorous evaluation of this optimization hypothesis is particularly demanded by recent evidence that the functional architecture of OP columns precisely follows species invariant quantitative laws. Because it would be desirable to infer the form of such an optimization principle from the biological data, the optimization approach to explain cortical functional architecture raises the following questions: i) What are the genuine ground states of candidate energy functionals and how can they be calculated with precision and rigor? ii) How do differences in candidate optimization principles impact on the predicted map structure and conversely what can be learned about an hypothetical underlying optimization principle from observations on map structure? iii) Is there a way to analyze the coordinated organization of cortical maps predicted by optimization principles in general? To answer these questions we developed a general dynamical systems approach to the combined optimization of visual cortical maps of OP and another scalar feature such as OD or spatial frequency preference.Comment: 90 pages, 16 figure
    corecore