17 research outputs found

    Are Mandates the Answer? Improving Palliative Care and Pain Management in Vermont

    Get PDF
    Background: The Vermont legislature (bill H.435, Sec. 19) has tasked the Vermont Board of Medical Practice (VBMP) with making a formal recommendation on improving Vermont health professionals’ knowledge and practice of Palliative Care and Pain Management (PC/PM). In collaboration with the VBMP, our group set out to answer the following questions: ‱ How confident/competent are VT physicians in the practice of PC/PM? ‱ What are the barriers to achieving optimal patient care in PC/PM? ‱ Do VT physicians believe mandatory CME would improve the overall quality of care in PC/PM? ‱ What are the best methods of providing Continuing Medical Education (CME)?https://scholarworks.uvm.edu/comphp_gallery/1040/thumbnail.jp

    Activation of the p53 Transcriptional Program Sensitizes Cancer Cells to Cdk7 Inhibitors

    Get PDF
    Cdk7, the CDK-activating kinase and transcription factor IIH component, is a target of inhibitors that kill cancer cells by exploiting tumor-specific transcriptional dependencies. However, whereas selective inhibition of analog-sensitive (AS) Cdk7 in colon cancer-derived cells arrests division and disrupts transcription, it does not by itself trigger apoptosis efficiently. Here, we show that p53 activation by 5-fluorouracil or nutlin-3 synergizes with a reversible Cdk7asinhibitor to induce cell death. Synthetic lethality was recapitulated with covalent inhibitors of wild-type Cdk7, THZ1, or the more selective YKL-1-116. The effects were allele specific; a CDK7asmutation conferred both sensitivity to bulky adenine analogs and resistance to covalent inhibitors. Non-transformed colon epithelial cells were resistant to these combinations, as were cancer-derived cells with p53-inactivating mutations. Apoptosis was dependent on death receptor DR5, a p53 transcriptional target whose expression was refractory to Cdk7 inhibition. Therefore, p53 activation induces transcriptional dependency to sensitize cancer cells to Cdk7 inhibition. Kalan et al. find that activation of the p53 tumor suppressor protein in human colon cancer-derived cells can induce transcriptional dependency on Cdk7, analogous to constitutive dependencies described in other tumors driven by oncogenic transcription factors. This work provides a proof of concept for combining p53-activating agents with Cdk7 inhibitors to elicit synthetic lethality. Keywords: Cdk7; p53; colon cancer; synthetic lethality; transcription; 5-fluorouracil; nutlin-3; apoptosis; chemical genetics; CDK inhibitorNational Institutes of Health (U.S.) (Grant HG002668

    Targeting transcription regulation in cancer with a covalent CDK7 inhibitor

    Get PDF
    Tumour oncogenes include transcription factors that co-opt the general transcriptional machinery to sustain the oncogenic state, but direct pharmacological inhibition of transcription factors has so far proven difficult. However, the transcriptional machinery contains various enzymatic cofactors that can be targeted for the development of new therapeutic candidates, including cyclin-dependent kinases (CDKs). Here we present the discovery and characterization of a covalent CDK7 inhibitor, THZ1, which has the unprecedented ability to target a remote cysteine residue located outside of the canonical kinase domain, providing an unanticipated means of achieving selectivity for CDK7. Cancer cell-line profiling indicates that a subset of cancer cell lines, including human T-cell acute lymphoblastic leukaemia (T-ALL), have exceptional sensitivity to THZ1. Genome-wide analysis in Jurkat T-ALL cells shows that THZ1 disproportionally affects transcription of RUNX1 and suggests that sensitivity to THZ1 may be due to vulnerability conferred by the RUNX1 super-enhancer and the key role of RUNX1 in the core transcriptional regulatory circuitry of these tumour cells. Pharmacological modulation of CDK7 kinase activity may thus provide an approach to identify and treat tumour types that are dependent on transcription for maintenance of the oncogenic state.National Institutes of Health (U.S.) (Grant HG002668)National Institutes of Health (U.S.) (Grant CA109901

    String analysis for x86 binaries

    No full text
    corecore