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SUMMARY

Cdk7, the CDK-activating kinase and transcription
factor IIH component, is a target of inhibitors that
kill cancer cells by exploiting tumor-specific tran-
scriptional dependencies. However, whereas selec-
tive inhibition of analog-sensitive (AS) Cdk7 in colon
cancer-derived cells arrests division and disrupts
transcription, it does not by itself trigger apoptosis
efficiently. Here, we show that p53 activation by
5-fluorouracil or nutlin-3 synergizes with a reversible
Cdk7as inhibitor to induce cell death. Synthetic
lethality was recapitulated with covalent inhibitors
of wild-type Cdk7, THZ1, or the more selective
YKL-1-116. The effects were allele specific; aCDK7as

mutation conferred both sensitivity to bulky adenine
analogs and resistance to covalent inhibitors. Non-
transformed colon epithelial cells were resistant
to these combinations, as were cancer-derived
cells with p53-inactivating mutations. Apoptosis
was dependent on death receptor DR5, a p53 tran-
scriptional target whose expression was refractory
to Cdk7 inhibition. Therefore, p53 activation induces
transcriptional dependency to sensitize cancer cells
to Cdk7 inhibition.

INTRODUCTION

Cyclin-dependent kinases (CDKs) regulate eukaryotic cell divi-

sion and RNA polymerase II (Pol II)-dependent transcription (re-

viewed in Morgan, 2007 and Sansó and Fisher, 2013). Cdk7

plays essential, direct roles in both cell division and transcription

cycles, as a CDK-activating kinase (CAK) that phosphorylates

CDKs on the activation segment (T loop) and as part of general

transcription factor (TF) IIH (reviewed in Fisher, 2005). Physio-

logic functions and targets of Cdk7 have been identified by a

chemical-genetic, ‘‘bumped-hole’’ approach—ATP-binding site

expansion by mutation of the gatekeeper residue to accommo-
Cell
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date bulky inhibitors or substrate analogs that cannot bind

wild-type kinases (Bishop et al., 1998). Gene targeting to replace

Cdk7WT with an analog-sensitive (AS) mutant version allowed

selective inhibition of the endogenous kinase in human colon

cancer-derived HCT116 cells (Larochelle et al., 2007).

As a CAK, Cdk7 is inherently able to influence both cell divi-

sion and gene expression; T loop phosphorylation is required

for the functions of both cell-cycle and transcriptional CDKs

(Larochelle et al., 2012; Schachter et al., 2013). Apart from its

CAK function, Cdk7, working in the context of TFIIH, phosphor-

ylates the C-terminal domain (CTD) of the Pol II large subunit

Rpb1, with a preference for Ser5 and Ser7 positions of the hep-

tad repeat consensus sequence, Y1S2P3T4S5P6S7 (Ramana-

than et al., 2001; Glover-Cutter et al., 2009). Cdk7 activity is

needed for the promoter-proximal pause, a rate-limiting step

in expression of genes transcribed by Pol II (Adelman and

Lis, 2012). Cdk7 promotes recruitment of the 5,6-dichloro-

1-b-D-ribofuranosyl-benzimidazole (DRB) sensitivity-inducing

factor (DSIF) and negative elongation factor (NELF) to the tran-

scription complex (Glover-Cutter et al., 2009; Larochelle et al.,

2012), which throws up a block to elongation that is relieved by

positive transcription elongation factor b (P-TEFb) (Peterlin and

Price, 2006). P-TEFb is itself a CDK, consisting of Cdk9 and cy-

clin T1, activation of which depends on phosphorylation by

Cdk7 (Larochelle et al., 2012). Therefore, Cdk7 acts both to

establish and to overcome the pause imposed by DSIF and

NELF; loss of this regulation diminishes Pol II occupancy in

gene bodies, and it is likely to uncouple RNA synthesis and

co-transcriptional processing (Glover-Cutter et al., 2009; Laro-

chelle et al., 2012).

Despite extensive efforts to target cell-cycle CDKs for anti-

cancer therapy (Malumbres and Barbacid, 2009), parallel ap-

proaches aimed at transcriptional CDKs only recently gained

traction. A covalent inhibitor of Cdk7, THZ1, induced global tran-

scriptional shutdown at high doses, but it had gene-selective

repressive effects at lower doses (Kwiatkowski et al., 2014).

In vitro, THZ1 recapitulated effects of Cdk7 inhibition on Pol II

pausing, and it impaired co-transcriptional RNA 50 end capping

(Nilson et al., 2015). Moreover, THZ1 triggered apoptosis of sen-

sitive cells in culture, and it limited or reversed growth of
Reports 21, 467–481, October 10, 2017 ª 2017 The Author(s). 467
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Figure 1. Synthetic-Lethal Effects of Cdk7 Inhibition Combined with p53 Activation

(A) CDK7as/as cells were treated with the indicated doses of flavopiridol (FP), without (�) or with (+) the addition of 1 mM 3-MB-PP1 for 14 hr prior to extract

preparation and immunoblot detection of PARP, p53, and p21.

(B) CDK7as/as cells were treated with the indicated doses of 5-FU, without (top) or with (bottom) the addition of 1 mM 3-MB-PP1 for 14 hr prior to extract

preparation and immunoblot detection of PARP. Signals were quantified by densitometry and expressed as a percentage of cleaved PARP (cleaved/uncleaved +

cleaved) below each lane.

(C) CDK7as/as cells were treated with the indicated doses of nutlin-3, without or with the addition of 3-MB-PP1 at the indicated doses for 14 hr prior to extract

preparation and immunoblot detection of PARP, p53, and a-tubulin. Signals were quantified by densitometry and expressed as a percentage of cleaved PARP

(cleaved/uncleaved + cleaved) below each lane. In (A)–(C), results are representative of multiple (n R 2) biological replicates.

(legend continued on next page)
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specific tumors—T cell acute lymphoblastic leukemia (T-ALL),

neuroblastoma, small cell lung cancer (SCLC), and triple-nega-

tive breast cancer (TNBC)—with minimal toxicity in human xeno-

graft mouse models (Chipumuro et al., 2014; Christensen et al.,

2014; Kwiatkowski et al., 2014; Wang et al., 2015).

Here, we show that selective inhibition of Cdk7 in HCT116

cells does not by itself trigger apoptosis, but it potentiates

p53-dependent cell killing by the antimetabolite 5-fluorouracil

(5-FU), and it switches cell fate from division arrest to death

upon p53 stabilization by nutlin-3. These synthetic-lethal effects

were (1) recapitulated with covalent inhibitors of transcriptional

CDKs, such as THZ1 or the more Cdk7-selective YKL-1-116,

in wild-type cells; (2) dependent on wild-type p53 function and

ongoing transcription; and (3) accompanied by caspase 8 activa-

tion and suppressed by depletion of the death receptor (and p53

target) DR5, suggesting engagement of the extrinsic apoptotic

pathway (Henry et al., 2012). Previous studies reported lethality

due to combined inhibition of poly(ADP-ribose) polymerase

(PARP) and CDKs implicated in DNA damage responses (John-

son et al., 2011, 2016). We provide proof of concept for syn-

thetic-lethal strategies targeting CDK functions in p53-respon-

sive transcription.

RESULTS

Inhibition of Multiple CDKs Promotes Apoptosis
To dissect Cdk7 functions in vivo, we previously replaced both

wild-type copies of CDK7 with CDK7F91G/D92E (CDK7as) in

HCT116 cells (Larochelle et al., 2007). Treatment of these cells

with bulky adenine analogs such as 3-MB-PP1, which potently

inhibits Cdk7as in vitro, prevented T loop phosphorylation of

Cdk1, -2, -4, -6, and -9, and it led to cell-cycle arrests and tran-

scription defects (Larochelle et al., 2007, 2012; Glover-Cutter

et al., 2009; Schachter et al., 2013). However, it did not efficiently

induce apoptosis, measured by PARP cleavage, the accumula-

tion of annexin V-positive cells, or caspase activation (Figures

S1A–S1C). This is in contrast to the pro-apoptotic effects of

THZ1 in T-ALL and other sensitive cell types (Kwiatkowski

et al., 2014).

We considered two possible, but not mutually exclusive, ex-

planations for the difference. First, THZ1 might elicit apoptosis

through the inhibition of Cdk7 and additional targets in the

same pathway, such as Cdk12 and/or Cdk13 (Kwiatkowski

et al., 2014). Second, vulnerability to selective CDK inhibitors

might be based on transcriptional dependencies unique to

certain cancers but lacking in HCT116 cells. To explore the first

possibility, we treated CDK7as/as cells with increasing doses of

3-MB-PP1 in the absence or presence of flavopiridol (FP), a

pan-CDK inhibitor that is most potent toward Cdk9 but that

also inhibits Cdk12 at higher doses (Chao and Price, 2001;

Bösken et al., 2014; Bartkowiak and Greenleaf, 2015). The addi-

tion of sublethal doses of FP (10 or 50 nM) sensitized cells to

killing by Cdk7 inhibition. However, 3-MB-PP1 doses >2 mM
(D) Bliss independence analysis in CDK7as/as cells for 3-MB-PP1 and 5-FU (left)

centrationmatrices performed in triplicate. Numbers inmatrices indicate percenta

DMSO-treated cells. Growth inhibition curves derived from these data are show

See also Figure S1.
suppressed PARP cleavage in the presence of 50 nM FP,

and, at 150 nM FP (a lethal dose on its own in CDK7as/as cells),

3-MB-PP1 suppressed PARP cleavage at doses >100 nM

(Figure S1A).

Similarly, the response of CDK7as/as cells to FP alone was

biphasic, with a maximum at �125 nM and suppression

at R250 nM (Figure 1A). Expression of p53 increased after FP

treatment with half-maximal induction at �150 nM, within the

pro-apoptotic range. The addition of 1 mM 3-MB-PP1 shifted

the FP dose needed for maximal PARP cleavage to �50 nM.

At higher doses of FP, apoptosis was suppressed; PARP cleav-

age returned to background levels at 125 nM, the optimal dose in

the absence of 3-MB-PP1. Cdk7 inhibition similarly potentiated

FP effects on p53 expression, which remained elevated as the

FP dose was raised. In contrast, a p53 transcriptional target—

the CDK inhibitor p21—was induced over a narrow FP dose

range, which was roughly co-extensive with the pro-apoptotic

range and likewise shifted to lower doses by 3-MB-PP1 addition.

Therefore, simultaneous inhibition of multiple CDKs can induce

apoptosis in HCT116 cells, but biphasic responses imply a limi-

tation on the ability of broad-specificity CDK inhibitors to trigger

cell death; at higher concentrations these drugs lose efficacy,

possibly because they also block transcription of pro-apoptotic

p53 targets.

Cdk7 Inhibition Potentiates Cell Killing by
p53-Activating Agents
FP elicited a p53 response and cell death, which were potenti-

ated by a Cdk7-selective drug that by itself did not activate

p53. At lower doses, where it is more likely to be Cdk7 selective,

THZ1 triggered apoptosis in vulnerable tumor cells with fixed de-

pendencies on oncogenic transcription factors (Kwiatkowski

et al., 2014). We reasoned that p53-activating agents might

induce a similar dependency and, because they do not directly

target the CDK network, do so without the dose limitation

seen with FP. We tested 5-FU and nutlin-3, which elicit

different p53-dependent phenotypes—death or arrested divi-

sion, respectively—in HCT116 cells (Donner et al., 2007).

In CDK7as/as cells, Cdk7 inhibition potentiated the effect of

5-FU by �20-fold; half-maximal PARP cleavage occurred at

�20 mM 5-FU in the presence of 1 mM 3-MB-PP1, compared

to >300 mM in its absence (Figure 1B). Similarly, treatment of

CDK7as/as cells with 1–10 mM nutlin-3 alone did not trigger

apoptosis, but it did so when combined with 3-MB-PP1 (Fig-

ure 1C). Combination of either 5-FU or nutlin-3 with 3-MB-PP1

led to a greater-than-additive accumulation of annexin V-posi-

tive cells, and both PARP cleavage and annexin V staining could

be blocked by the addition of the caspase inhibitor Z-VAD (Fig-

ures S1B and S1C). There was no difference in levels of p53

induced by nutlin-3 in the presence or absence of 3-MB-PP1,

indicating that Cdk7 inhibition works downstream of p53

to switch cell fate from division arrest to death in response to

nutlin-3.
or nutlin-3 (right). Bliss scores were calculated from mean values of full con-

ge reduction inmetabolic activity, asmeasured by resazurin staining, relative to

n below each matrix.
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We tested for synergy between 3-MB-PP1 and p53-acti-

vating agents by combination analysis over full concentration

matrices (Figure 1D). The analog acted synergistically to shift

dose responses to 5-FU and, to a greater extent, nutlin-3,

as indicated by strongly positive Bliss independence scores

(Zhao et al., 2014). Cdk7 inhibition therefore lowers 5-FU doses

needed to kill tumor cells that are normally responsive to the

drug, and it confers nutlin-3 sensitivity on normally resistant

cells. These results suggest that p53 stabilization might induce

transcriptional dependency, sensitizing cells to killing by single-

CDK inhibition.

Synthetic Lethality of p53 Activators with Covalent
Inhibitors of Wild-Type Cdk7
We next asked if synthetic-lethal effects of 3-MB-PP1 in

CDK7as/as cells could be recapitulated with THZ1. Modeling of

THZ1 dockedwith an X-ray crystal structure of humanCdk7 sug-

gested close proximity of the drug to the side chain of gate-

keeper residue Phe91 (Kwiatkowski et al., 2014). In vitro, Cdk7as

complexes were resistant to THZ1 at concentrations up to 10 mM

(Figure 2A). In contrast, Cdk7WT was inhibited by THZ1 with

an IC50 of �100 nM. Conversely, Cdk7WT was insensitive to

3-MB-PP1, which inhibited Cdk7as with an IC50 of �10 nM, as

reported (Merrick et al., 2008).

We tested the allele specificity of each drug in wild-type and

CDK7as/as cells (Figure 2B). In the absence of other drugs, neither

10–100 nM THZ1 nor 0.5–2.5 mM 3-MB-PP1 induced PARP

cleavage in either genetic background (although 100 nM THZ1

induced p53 expression in wild-type cells). When combined

with 40 mM 5-FU, THZ1 induced PARP cleavage in CDK7WT/WT

cells, but only at doses of 10 and 50 nM and not at 100 nM. In

CDK7as/as cells, however, there was no synthetic-lethal effect

of combining 5-FU and THZ1. As expected, 3-MB-PP1 had the

opposite allele specificity—synthetic lethality with 5-FU in

CDK7as/as, but not in CDK7WT/WT, cells—with no loss of efficacy

at higher doses.

In deriving CDK7as/as cells, we generated heterozygous,

CDK7WT/as intermediates (Larochelle et al., 2007), which express

wild-type and AS Cdk7 at approximately equal levels and, there-

fore, should retain Cdk7 activity in the presence of either 3-MB-

PP1 or THZ1, but not both drugs. In accordance with this predic-

tion, CDK7WT/as cells did not undergo apoptosis when treated

with pairwise combinations of 5-FU and either 3-MB-PP1 or

THZ1, but they did so when all three drugs were added (Fig-

ure 2B). Therefore, a single copy of either CDK7 allele, wild-

type (WT) or as, can complement inactivation of the enzyme en-

coded by the other. This further validates Cdk7 as the unique,

common target of 3-MB-PP1 and THZ1 relevant for synthetic

lethality.

Synthetic Lethality of 5-FU and CDK Inhibitors Is p53
Dependent
We hypothesized that p53 stabilization establishes dependency

on Cdk7, such that Cdk7 inhibition modifies the downstream

transcriptional response to favor pro-apoptotic over pro-survival

pathways. It follows that synthetic lethality should depend on a

functional p53. To test that prediction, we used recombinant

adeno-associated virus (rAAV) vectors (Topaloglu et al., 2005)
470 Cell Reports 21, 467–481, October 10, 2017
to disrupt both copies of TP53 (encoding p53) in CDK7as/as

HCT116 cells (Figure S2A). In CDK7as/as TP53�/� cells, neither

p53 nor p21 was detectable after treatment with the DNA-

damaging agent doxorubicin, whereas both were induced in

CDK7as TP53+ cells (Figure S2B). Loss of p53 led to a slight

sensitization to 3-MB-PP1, measured either by PARP cleavage

or cell viability (Figures 2C and S2C). The effects of combined

3-MB-PP1 and 5-FU treatment were less than additive, however,

in CDK7as/as TP53�/� cells (Figures 2C and S2D). (The CDK7as

mutation also appeared to sensitize TP53�/� cells to treatment

with 375 mM 5-FU [Figure S2E].) Similarly, we observed

greater-than-additive effects of combining 5-FU with THZ1 in

TP53+/+, but not in TP53�/�, HCT116 cells with wild-type Cdk7

(Figure 2D) and in TP53+ colorectal cancer-derived RKO (Fig-

ure S2F) or LoVo cells (data not shown), but not in the TP53�

mutant lines HT29 or DLD1 (Figure S2G). Therefore, the synthetic

lethality of 5-FU + Cdk7 inhibition in colon cancer-derived cells

depends on an intact p53 pathway.

A Cdk7-Selective Covalent Inhibitor Synergizes with
5-FU and Nutlin-3
By analogy with the biphasic response to FP (Figure 1A), we sus-

pected that attenuated synthetic lethality at THZ1 doses >50 nM

(Figure 2B) might be due to the inhibition of additional THZ1 tar-

gets, such as Cdk12 and Cdk13 (Kwiatkowski et al., 2014). The

response of CDK7as/as cells to 3-MB-PP1 was not similarly

biphasic, so we reasoned that a more selective inhibitor of

wild-type Cdk7 might work over a broader dose range. As part

of efforts to develop more specific kinase inhibitors, we synthe-

sized YKL-1-116 (Figure 3A), a covalent inhibitor of Cdk7 (Fig-

ures S3A and S3B) that does not target Cdk9, Cdk12, or

Cdk13 (Figure 3B; Tables S1 and S2). In vitro, YKL-1-116 was

more potent than THZ1 toward both Cdk7WT and Cdk7as,

although Cdk7as was relatively resistant to this compound as

well (Figure 3C). In wild-type cells, YKL-1-116 alone elicited min-

imal amounts of PARP cleavage only at the highest doses tested,

reminiscent of the effects of 3-MB-PP1 on CDK7as/as cells. In

combination with 40 mM 5-FU, however, YKL-1-116 induced

PARP cleavage in a dose-dependent fashion, with little loss of ef-

ficacy at higher concentrations (Figure 3D). Similarly, combining

5 mM nutlin-3 with 100–800 nM YKL-1-116 produced dose-

dependent increases in PARP cleavage (Figure 3E). As with

THZ1, synthetic lethality depended on potency toward Cdk7:

the CDK7as/as cells were resistant to combinations of YKL-1-

116 and either 5-FU (Figure 3D) or nutlin-3 (Figure 3E). Moreover,

both 5-FU and nutlin-3 shifted dose responses of wild-type cells

to YKL-1-116, with strongly positive Bliss scores indicating drug

synergy (Figure 3F). Similar independence analysis of THZ1

yielded weakly positive or even negative scores due to a loss

of efficacy at higher doses (data not shown). Combinations of

YKL-1-116 with either 5-FU or nutlin-3 were effective against a

variety of p53-positive cells derived from different tumor types

(Figures S3C–S3F). Finally, combinations of THZ1 or YKL-1-

116 with 5-FU did not trigger PARP cleavage in a non-trans-

formed colorectal epithelial cell line, CCD 841 CoN, despite the

induction of p53 (Figure S3G). Taken together, the results

with 3-MB-PP1, THZ1, and YKL-1-116 indicate that increasing

the specificity of Cdk7 inhibition can enhance synergistic,



Figure 2. Synthetic Lethality of 5-FU and Cdk7 Inhibitors Is CDK7 Allele Specific and p53 Dependent

(A) Allele-specific inhibition of Cdk7 in vitro. T loop-phosphorylated, trimeric complexes containing Cdk7 (WT or as), cyclin H, and Mat1 (�5 nM each)

were incubated with the indicated concentrations of 3-MB-PP1 or THZ1, and they were tested for kinase activity toward a fusion protein containing the Pol II CTD

(GST-CTD), with results shown by representative autoradiograms (top) and quantified by Phosphorimager (bottom). Error bars indicate ± SEM of triplicate

samples.

(B) CDK7WT/WT, CDK7as/as, or CDK7WT/as HCT116 cells, as indicated, were treated with the indicated combinations and doses of drugs for 14 hr prior to extract

preparation and immunoblot detection of PARP and p53.

(C)CDK7as/as TP53�/�HCT116 cells were treated with the indicated drugs, at the indicated doses, for 14 hr prior to lysis and immunoblot detection of PARP, p53,

and a-tubulin.

(D) Wild-type or TP53�/� HCT116 cells were treated with the indicated drugs, at the indicated doses, for 14 hr prior to lysis and immunoblot detection of PARP,

p53, and a-tubulin.

See also Figure S2.
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Figure 3. YKL-1-116, a Cdk7-Selective Covalent Inhibitor, Synergizes with 5-FU or Nutlin-3 to Kill HCT116 Cells

(A) YKL-1-116 structure.

(B) Selectivity of YKL-1-116 for Cdk7 over other CDKs, as determined by KiNativ kinome profiling. For each CDK, the percentage inhibition of labeling by a

desthiobiotin-ATP probe after exposure in vivo to YKL-1-116 is indicated.

(C) Inhibition of Cdk7 by YKL-1-116 in vitro. As in Figure 2A, complexes containing Cdk7 (WT or as) were incubated with the indicated concentrations of YKL-1-

116 and tested for kinase activity toward GST-CTD, with results shown by representative autoradiograms (top) and quantified by Phosphorimager (bottom). Error

bars indicate ± SEM of triplicate samples.

(D) CDK7WT/WT or CDK7as/as HCT116 cells were treated with the indicated Cdk7 inhibitors, at the indicated doses, with or without 40 mM 5-FU, as indicated, for

14 hr prior to lysis and immunoblot detection of PARP and a-tubulin.

(legend continued on next page)
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synthetic-lethal effects of combinatorial treatments in cancer-

derived cells with functional p53.

Transcriptional Disruption Underlies Synthetic Lethality
of 5-FU and Cdk7 Inhibition
To unravel the mechanism(s) of this synthetic lethality, we first

compared the effects of FP, which at low doses primarily

affects transcriptional CDKs, and purvalanol A, which inhibits

cell-cycle CDKs activated by Cdk7, with selectivity for Cdk1

(Gray et al., 1998). In wild-type HCT116 cells, which are less

FP sensitive than CDK7as/as cells (Larochelle et al., 2012),

150 nM FP did not induce PARP cleavage on its own, but

it did so in combination with sublethal doses of 5-FU (Fig-

ure S4A). In contrast, there was no detectable PARP cleavage

after treatment with 5-FU and purvalanol A. There was likewise

no PARP cleavage in 5-FU-exposed CDK2as/as HCT116 cells

treated with 3-MB-PP1 (Figure S4B), which impedes G1/S

progression by inhibiting Cdk2as in these cells (Merrick et al.,

2011). We infer that CDK functions in transcription are needed

to avoid apoptosis after 5-FU exposure. Also suggestive of a

transcription-dependent mechanism, synthetic lethality could

be suppressed by simultaneous treatment with triptolide (Fig-

ure 4A), which covalently inhibits XPB, a TFIIH subunit required

for transcription by Pol II (Titov et al., 2011). In contrast, spe-

cific inhibitors of Pol I or Pol III—CX5461 (Drygin et al., 2011)

or ML60218 (Wu et al., 2003), respectively—were unable to

suppress synthetic lethality, even when added together. There-

fore, Pol II activity is necessary and sufficient for the transcrip-

tion-dependent lethality of combined 5-FU treatment and Cdk7

inhibition.

5-FU can be incorporated into DNA or RNA (Longley et al.,

2003). Therefore, to test if synthetic lethality depended on RNA

or DNAmetabolism, we compared the effects of ribose or deoxy-

ribose derivatives of 5-FU—5-fluorouridine (5-FUR) or 5-fluoro-

20-deoxyuridine (5-FdUR), respectively (Figures 4B and 4C).

Even in the absence of 3-MB-PP1, CDK7as/as HCT116 cells

were more sensitive to 5-FUR than to 5-FU or 5-FdUR. The addi-

tion of 1 mM 3-MB-PP1 potentiated pro-apoptotic effects of

5-FUR, but not 5-FdUR, suggesting that the relevant toxic

metabolite is 5-FU-containing RNA rather than DNA.

Prior Exposure to 5-FU Sensitizes Cells to Cdk7
Inhibition
To dissect these responses further, we first determined when

CDK7as/as HCT116 cells exposed to various treatments became

committed to apoptosis. In cells treated with 5 mM nutlin-3 +

2.5 mM 3-MB-PP1 or with 375 mM 5-FU alone, PARP cleavage

measured at 24 hr was largely, but not completely, prevented if

drugs were removed as late as 12 hr after addition. In contrast,

combined treatment with 40 mM 5-FU and 2.5 mM 3-MB-PP1

accelerated passage of a point of no return; cells became irre-
(E) CDK7WT/WT or CDK7as/as HCT116 cells were treated with the indicated Cdk7 in

14 hr prior to lysis and immunoblot detection of PARP and a-tubulin.

(F) Bliss independence analysis in CDK7WT/WT cells for YKL-1-116 and 5-FU (left

matrices. Numbers in matrices indicate percentage reduction in metabolic activi

inhibition curves derived from these data are shown below each matrix.

See also Figure S3 and Tables S1 and S2.
versibly committed to apoptosis 6–9 hr after drug addition

(Figure 5A).

Nutlin-3 acts directly to inhibit ubiquitylation and proteaso-

mal degradation of p53 (Vassilev et al., 2004). The mechanism

of 5-FU action is indirect, requiring a toxic intermediate that,

once it accumulates, can sustain p53 activation in the absence

of the drug. Consistent with this scenario, we achieved similar

cell-killing efficacy by simultaneous or sequential treatment

with 5-FU and 3-MB-PP1, whereas nutlin-3 and 3-MB-PP1

needed to be administered together (Figure 5B). Moreover,

the lethality of sequential treatment depended on the order

of drug addition: 3-MB-PP1 was equally effective whether it

was given with or after 5-FU treatment, and either regimen

was more effective than 5-FU given only after 3-MB-PP1

removal.

The addition of 1 mM triptolide during the first (5-FU) or second

(3-MB-PP1) treatment suppressed PARP cleavage (Figure 5C).

Rescue by triptolide after the removal of 5-FU indicates that

ongoing Pol II transcription is required to activate caspases

when Cdk7 is inhibited. Taken together with the relative toxicities

of 5-FUR and 5-FdUR (Figures 4B and 4C), the results suggest

that transcription is needed for both steps in the pathway leading

to cell death, with a specific requirement for Pol II at the second,

3-MB-PP1-dependent step. Moreover, a time course of 3-MB-

PP1 treatment after 5-FUwashout indicated that the relevant dif-

ferences in gene expression caused by Cdk7 inhibition would be

detectable by 3–6 hr after the addition of 3-MB-PP1, when cells

have committed to apoptosis but before effector caspases are

activated (Figure 5D).

Cdk7 Inhibition Modulates the Transcriptional
Response to p53 Activation
To detect alterations in transcription that might favor cell death

when Cdk7 is inhibited, we performed RNA sequencing analysis

(RNA-seq) of CDK7as/as cells that were pre-treated with 40 mM

5-FU or DMSO for 12 hr, washed, and incubated in freshmedium

containing 2.5 mM3-MB-PP1 or DMSO for an additional 4 hr (Fig-

ure 6A). Treatment with 5-FU increased expression of 145 tran-

scripts while repressing 420 genes (Figure 6B, left column). We

asked if either of these transcript pools was enriched for known

p53 targets included in the p53 Hallmark Pathway gene set

(Broad Institute database MSigDB). Gene set enrichment anal-

ysis (GSEA) (Subramanian et al., 2005) revealed that members

of this set were enriched among transcripts induced by 5-FU

(Figure 6C). Expression of p53 targets was significantly elevated

upon 5-FU treatment in comparison to changes in global mRNA

levels (Figure 6D, top panel; Figure 6E, top panel). The addition of

3-MB-PP1 to 5-FU-treated cells blunted the induction of p53 tar-

gets relative to 5-FU treatment alone (Figure 6B, right column;

Figure 6D, bottom panel; Figure 6E, bottom panel), although it

did not restore expression of these genes to their pre-5-FU levels
hibitors, at the indicated doses, with or without 5 mM nutlin-3, as indicated, for

) or nutlin-3 (right). Bliss scores represent the mean of triplicate concentration

ty, as measured by resazurin staining, relative to DMSO-treated cells. Growth
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Figure 4. Synthetic Lethality of 5-FU + CDK Inhibition Is Transcription Dependent

(A) CDK7as/as cells were treated with 5-FU (40 mM) and/or 3-MB-PP1 (1 mM), as indicated, with the addition of inhibitors of Pol I (1 mM CX5461), Pol II (1 mM

triptolide), or Pol III (60 mM ML60218), as indicated, for 14 hr prior to extract preparation and immunoblot detection of PARP, p53, and a-tubulin.

(B) CDK7as/as cells were treated with the indicated doses of 5-fluorouridine (5-FUR), without or with the addition of 1 mM3-MB-PP1, as indicated, for 14 hr prior to

extract preparation and immunoblot detection of PARP, p53, and a-tubulin.

(C) CDK7as/as cells were treated with the indicated doses of 5-fluorodeoxyuridine (5-FdUR), without or with the addition of 1 mM3-MB-PP1, as indicated, for 14 hr

prior to extract preparation and immunoblot detection of PARP, p53, and a-tubulin.

See also Figure S4.
(Figure 6B, middle column; Figures S5A–S5C). Expression of

p53-regulated genes such as p21 andMDM2was reduced, sug-

gesting attenuation of pro-survival transcriptional signaling

induced by 40 mM 5-FU (Figure 6F). We validated the decrease

inMDM2 transcripts by qRT-PCR analysis of cells treated simul-

taneously with 3-MB-PP1 and 5-FU (Figure 6G) or nutlin-3 (Fig-

ure 6H), and we verified that this change was dependent on

the CDK7as mutation (i.e., it did not occur in wild-type HCT116

cells; Figures S5D and S5E). Expression of Mdm2 and p21 pro-

teins was also attenuated by Cdk7 inhibition, in response to

sequential treatment with 5-FU and 3-MB-PP1 (Figures 6I and

S5F) or simultaneous treatment with nutlin-3 and 3-MB-PP1

(Figures 6J and S5G).

In contrast to these effects on MDM2 and p21, transcription

levels of two pro-apoptotic p53 targets induced by 5-FU or nut-

lin-3—death receptor genes DR5 and FAS—were sustained in

the presence of 3-MB-PP1 (Figures 6F–6H). DR5 and FAS pro-

teins were also induced to similar levels by 5-FU or nutlin-3 in

the absence or presence of 3-MB-PP1 (Figures 6I, 6J, S5F,

and S5G). In cells pre-treated with DMSO, 3-MB-PP1 did not

selectively affect the expression of p53-regulated genes, indi-

cating that it specifically modulated transcriptional responses

to p53 stabilization (Figures S5A–S5C). These results suggest

that Cdk7 inhibitors might synergize with 5-FU or nutlin-3 by

tipping the balance of p53-dependent transcription toward

death-promoting targets such as DR5 and FAS.
474 Cell Reports 21, 467–481, October 10, 2017
A Role for the Extrinsic Pathway and a Requirement for
DR5 in Synthetic Lethality
The possible involvement of DR5 suggested engagement of the

extrinsic pathway, which is implicated in HCT116 cell killing by

higher doses of 5-FU (Henry et al., 2012). Effectors specific to

the extrinsic pathway include caspase 8, which was activated

by treating CDK7as/as cells with 3-MB-PP1 in combination with

either 5-FU (Figure 7A) or nutlin-3 (Figure 7B).

In HCT116 cells exposed to high-dose 5-FU, DR5 and FAS

were previously shown to translocate to the plasma membrane,

and DR5 silencing impeded caspase activation (Can et al.,

2013). To assess the involvement of DR5, FAS, and DR4

(another death receptor) in synthetic lethality, we silenced the

expression of each with small interfering RNA (siRNA), treated

cells with 3-MB-PP1 and either 5-FU or nutlin-3, and measured

markers of apoptosis. We achieved similar degrees of knock-

down of each of the three proteins (Figures 7C, 7D, S6A, and

S6B). Depletion of DR5 by �50% diminished PARP cleavage

and led to a statistically significant reduction in the annexin

V-positive fraction (p z 0.012, two-tailed t test) in cells treated

with 3-MB-PP1 + 5-FU (Figures 7C and 7E) and a reproducible

reduction in cells treated with 3-MB-PP1 + nutlin-3 (Figures 7D

and 7F). Knockdown of FAS also caused a significant reduction

in annexin V staining upon treatment with 5-FU + 3-MB-PP1

(p z 0.0015), but not nutlin-3 + 3-MB-PP1, whereas DR4

depletion did not significantly affect annexin V staining or



Figure 5. Cdk7 Inhibition after 5-FU Expo-

sure Triggers Apoptosis Dependent on Tran-

scription

(A) CDK7as/as cells were treated with 5-FU, nutlin-3,

and/or 3-MB-PP1, as indicated, for the indicated

times. Where indicated, drug-containing media

were removed and replaced with fresh, drug-free

medium. All cells were harvested after 24 hr for

extract preparation and immunoblot detection of

PARP and p53.

(B) CDK7as/as cells were incubated with the indi-

cated drugs for 12 hr (first), washed, and incubated

for an additional 12 hr with the indicated drugs

(second), prior to extract preparation and immu-

noblot detection of PARP, p53, and p21.

(C) As in (B) but with the addition of 1 mM triptolide

(Trp) to the indicated cell populations, during either

first or second incubation, as indicated.

(D)CDK7as/as cells were pretreated with 40 mM5-FU

for 12 hr, washed, treated with 2.5 mM 3-MB-PP1

for the indicated times, and collected at the indi-

cated times for extract preparation and immunoblot

detection of PARP and p53.
PARP cleavage in response to either drug combination (Figures

7E, 7F, S6A, and S6B). Taken together, the results suggest

repression of pro-survival p53 targets, with sparing of DR5

and activation of the extrinsic pathway, as a common mecha-

nism through which Cdk7 inhibition can potentiate pro-

apoptotic effects of 5-FU or switch cell fate from arrest to death

in response to nutlin-3.

DISCUSSION

Protein kinases are attractive targets for drug discovery, but con-

servation of their active sites has hindered the development of se-

lective small molecule inhibitors. Chemical genetics circumvents

this limitation to facilitate mechanistic studies. Homozygous

replacement of wild-type CDKs with AS variants in human cells

enabled the dissection of complex biochemical pathways and

identification of substrates of specific CDKs (Larochelle et al.,

2007; Merrick et al., 2008, 2011; Wohlbold et al., 2012). Here we

demonstrate the utility of AS kinase-expressing human cell lines

as platforms for discovery of synthetic-lethal drug combinations.

Genetically sensitized cells also provide a benchmark by

which to gauge drug specificity; the ability of THZ1 to recapitu-

late effects of 3-MB-PP1 in CDK7as cells helped validate it as a

Cdk7 inhibitor (Kwiatkowski et al., 2014). THZ1 treatment dimin-

ished bulk Ser2, Ser5, and Ser7 phosphorylation of the Pol II CTD

whereas allele-specific inhibition of Cdk7as did not (Larochelle

et al., 2007; Glover-Cutter et al., 2009), suggesting that THZ1

had additional targets. THZ1 effects on both CTD phosphoryla-

tion and cell survival were, nevertheless, rescued by the expres-
Cell R
sion of a THZ1-refractory Cdk7 variant

(Kwiatkowski et al., 2014). To reconcile

these results, we propose that Cdk7 inac-

tivation is necessary to elicit the observed

effects in vivo but not sufficient; engage-

ment of secondary targets such as
Cdk12 and Cdk13—CTD kinases that can be selectively in-

hibited to trigger apoptosis (Zhang et al., 2016)—might

contribute.

Irreversible inactivation of Cdk7 by THZ1 depends on cova-

lent modification of Cys312, a residue outside the kinase

domain conserved in Cdk12 and Cdk13 (Kwiatkowski et al.,

2014). We now report THZ1 insensitivity of a Cdk7 variant with

an active-site mutation. The resistance conferred by different

mutations—F91G/D92E or C312S—indicates that specificity is

determined by both the contours of the ATP-binding site and

accessibility of a Cys residue for covalent modification (Kwiat-

kowski et al., 2014). Similar resistance to inhibitors of polo-like

kinase 1 (Plk1) arose in human cells expressing an AS variant,

due not to the gatekeeper mutation per se but rather to a sec-

ond site substitution needed for mutant kinase activity (Burkard

et al., 2012). The resistance of CDK7as cells to THZ1 and YKL-1-

116 provides a means to test whether phenotypes induced by

these drugs depend on the inhibition of their primary target,

and it suggests a potential path to acquired drug resistance in

tumors.

As anti-cancer therapeutic targets, transcriptional CDKs did

not offer the obvious advantage of being needed only in prolifer-

ating cells, and they seemed to entail a risk of toxicity to normal

tissues. However, chemical-genetic ablation of Cdk7 catalytic

function caused gene-specific rather than global repression of

transcription in fission yeast (Viladevall et al., 2009) and human

cells (this report). Although post-transcriptional mRNA stabiliza-

tionmight havemaskedmore widespread effects on synthesis in

budding yeast (Rodrı́guez-Molina et al., 2016), measurements of
eports 21, 467–481, October 10, 2017 475



(legend on next page)

476 Cell Reports 21, 467–481, October 10, 2017



Pol II occupancy likewise indicate differential requirements for

Cdk7 at different genes (Glover-Cutter et al., 2009; Viladevall

et al., 2009; Larochelle et al., 2012). Similarly, different mRNAs

exhibit a range of sensitivities to THZ1 in human cells (Kwiatkow-

ski et al., 2014). A common feature of several THZ1-hypersensi-

tive tumors is dependence on super-enhancers—regulatory ele-

ments that nucleate high-density assembly of Pol II machinery

and histone modifications permissive for high levels of transcrip-

tion (Hnisz et al., 2013; Lovén et al., 2013). Reliance on onco-

genic transcription factors—MYC in SCLC or neuroblastoma or

RUNX1 in T-ALL (Chipumuro et al., 2014; Christensen et al.,

2014; Kwiatkowski et al., 2014)—might make these tumors

especially vulnerable to perturbation of the Pol II cycle. Hyper-

sensitivity to THZ1 need not be based on addiction to a single

factor, but it can be a cumulative effect of activating multiple, in-

dependent transcription programs, for example, in TNBC (Wang

et al., 2015). Here we show that p53 activation in cancer cells can

also induce dependence on Cdk7 function and might form the

basis for a synthetic-lethal therapy (Figure 7G).

The balance between pro-apoptotic and pro-survival gene

expression induced by p53—and thus the outcome of p53 acti-

vation—depends on the nature and strength of the p53-acti-

vating signal and varies among cell types exposed to the same

stimulus (Donner et al., 2007). It is not clearly correlated, how-

ever, with levels of pro- versus anti-apoptotic gene transcription.

Comparative analyses of responses to 5-FU or nutlin-3 impli-

cated post-transcriptional stabilization of DR4, leading to cas-

pase 8 activation and BID cleavage, in the killing of HCT116 cells

by 5-FU (Henry et al., 2012). Conversely, RNAi-based screens

identified signaling pathways that promote survival when p53

is activated by nutlin-3; depletion or inhibition of the kinases

ATM or MET converted the response of HCT116 cells from divi-

sion arrest to death, without gross alterations in gene expression

patterns (Sullivan et al., 2012). Cdk7 inhibition achieves a similar

cell fate switch through a transcriptional mechanism, which

depends on the expression of DR5. The same p53 target con-
Figure 6. Cdk7 Inhibition Modulates the Transcriptional Response to p

(A) Schematic of sequential treatments of CDK7as/as cells with 5-FU (40 mM) and

(B) 5-FU treatment changes steady-state mRNA levels. HCT116 cells were treated

between the indicated conditions for the 25,556 transcripts expressed in DMSO

(C) Transcripts upregulated by 5-FU are enriched for p53 target genes. GSEA o

following treatment with 5-FU is compared to transcripts associated with the p5

(D) Per-transcript line plots showing Log2 fold change in expression following 5-

5-FU/3MB-PP1 in comparison to 5-FU/DMSO treatment (bottom panel). Gray lin

lines indicate p53 Hallmark Pathway Gene transcripts. Red line indicates no cha

(E) Boxplots showing distribution of Log2 fold changes in expression for the ind

treatment (top panel) and following 5-FU/3MB-PP1 in comparison to 5-FU/DMS

(F) RNA-seq data for individual pro-apoptotic (DR4, DR5, and FAS) and pro-s

treatments, relative to levels in DMSO (indicated by dashed horizontal line and d

(G) qRT-PCR analysis of selected p53 target gene expression in CDK7as/as cell

DMSO-treated cells. Error bars indicate ± SEM of biological replicates.

(H) qRT-PCR analysis of selected p53 target gene expression in CDK7as/as cells a

DMSO-treated cells. Error bars indicate ± SEM of biological replicates.

(I) Immunoblot analysis of selected p53 target gene products in CDK7as/as cells a

after exposure to the second drug (8 hr after second drug removal) for extract

a-tubulin.

(J) Immunoblot analysis of selected p53 target gene products in CDK7as/as cells

vested after 12-hr drug exposure for extract preparation and immunoblot detect

See also Figure S5 and Table S3.
tributes to Cdk7 inhibitor-mediated, transcription-dependent

potentiation of cell killing by 5-FU. Mechanistic studies will be

needed to determine why DR5 transcription is refractory to

Cdk7 inhibition. Moreover, depletion of DR5 only partially sup-

pressed synthetic lethality; although this might reflect incom-

plete knockdown, further analyses are warranted to reveal other

pro-apoptotic p53 targets expressed (or anti-apoptotic ones

repressed) in the presence of Cdk7 inhibitors.

Finally, comparison between THZ1 and YKL-1-116 suggests a

rationale for enhancing selectivity of clinically important kinase

inhibitors. Although the ability to inhibit multiple kinases might

potentiate cell-killing effects of drugs such as THZ1 (Knight

et al., 2010), it increases the risk of toxicity in normal tissues,

and, as we have shown, it can limit efficacy in combinations

with other agents. Whereas simultaneous inhibition of closely

related targets can have additive or synergistic effects, other

anti-targets might need to remain active to elicit a therapeutically

desirable outcome, such as death of a cancer cell (Dar et al.,

2012). We suggest that the organization of the transcription cy-

cle, with precise coordination dependent on specialized func-

tions of closely related CDKs, makes it uniquely susceptible to

surgical inactivation of individual kinases that leaves others

active to trigger maladaptive stress responses and death in

vulnerable cell populations.
EXPERIMENTAL PROCEDURES

Cell Culture, Drug Treatment, and Extract Preparation

HCT116 cells were grown and lysates prepared as described (Larochelle et al.,

2012). Cells were plated 24 hr prior to drug treatments. Synthesis and charac-

terization of YKL-1-116 are described, and other drugs and antibodies used

are listed, in the Supplemental Experimental Procedures.

Drug Synergy Analysis

Drug synergy was measured by Bliss independence analysis (Zhao et al.,

2014) as described (Dhawan et al., 2016). Details of drug treatments and anal-

ysis are described in the Supplemental Experimental Procedures.
53 Activation

3-MB-PP1 (2.5 mM) used for RNA-seq analysis.

as indicated in (A). Heatmaps display the Log2 fold change in gene expression

.

f all expressed transcripts rank-ordered from upregulated to downregulated

3 Hallmark Pathway Genes from MSigDB. GSEA-supplied p value < 0.001.

FU/DMSO in comparison to DMSO/DMSO treatment (top panel) and following

es indicate top 10% of most highly expressed gene transcripts in DMSO. Blue

nge in gene expression.

icated transcript sets following 5-FU/DMSO in comparison to DMSO/DMSO

O treatment (bottom panel).

urvival (MDM2 and p21) p53 transcriptional targets, after the indicated drug

efined as 1.0). Error bars indicate ± SEM of biological replicates.

s after simultaneous exposure to 5-FU and/or 3-MB-PP1, relative to levels in

fter simultaneous treatment with nutlin-3 and/or 3-MB-PP1, relative to levels in

fter sequential treatment with 5-FU and 3-MB-PP1. Cells were harvested 12 hr

preparation and immunoblot detection of PARP, Mdm2, DR5, FAS, p21, and

after simultaneous treatment with nutlin-3 and/or 3-MB-PP1. Cells were har-

ion of PARP, Mdm2, DR5, FAS, p21, and a-tubulin.
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Figure 7. Activation of the Extrinsic Pathway of Apoptosis by Synthetic-Lethal Combinations of p53 Activators and Cdk7 Inhibitors,

Dependent on DR5
(A)CDK7as/as cells were treatedwith the indicated dose of 5-FU, with or without 1 mM3-MB-PP1 as indicated for 14 hr prior to extract preparation and immunoblot

detection of PARP, activated caspase 8 (p18 isoform), and a-tubulin.

(legend continued on next page)
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Kinase Assays

Kinase assays were performed with complexes of phosphorylated Cdk7 (WT

or AS), cyclin H, and Mat1 generated by adding purified His-Mat1 to Cdk7-cy-

clin H dimer, as previously described (Larochelle et al., 2001), with or without

treatment with various inhibitors, as described in the Supplemental Experi-

mental Procedures.

TP53 Knockout in CDK7as/as Cells

The TP53 gene was disrupted in HCT116 CDK7as/as cells with an rAAV vector

as described (Topaloglu et al., 2005).

RNA-Seq

RNA-seq reads were aligned to a version of the hg19 human reference

genome with external RNA control consortium (ERCC) spike-in reference

sequences added using tophat (Trapnell et al., 2009) version (v.)2.0.13

with parameters –no-novel-juncs and –G set to the human RefSeq tran-

script list downloaded in May 2013. Reads overlapping to the Encyclopedia

of DNA Elements (ENCODE) list of blacklist regions (Consortium, 2012)

were filtered using bedtools (Quinlan, 2014) intersect. Per-transcript

expression values were created using RPKM_count.py from the RSeQC

package (Wang et al., 2012) using –e, the RefSeq transcript list, and

ERCC probe regions. Reads per kilobase of transcript per million mapped

reads (RPKM) values between 0 and 0.1 were set to 0.1, and a pseudo-

count of 0.1 was added to all transcripts. For each transcript, replicates

of each condition were averaged. For displays, expressed transcripts are

those with RPKM > 1 in the average of the DMSO replicates. GSEA (Sub-

ramanian et al., 2005) was performed with GSEA software, using the p53

Hallmark Pathway gene set from Broad Institute database MSigDB. This

same gene set was used in all expression plots to indicate p53 pathway

genes.

RNAi

Cells were transfected with siRNA oligonucleotides as described in the

Supplemental Experimental Procedures.

Data and Software Availability

The accession number for the sequencing data reported in this paper is GEO:

GSE99794.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and three tables and

can be found with this article online at https://doi.org/10.1016/j.celrep.2017.

09.056.
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(B) CDK7as/as cells were treated with the indicated dose of 3-MB-PP1, with or

immunoblot detection of PARP, activated caspase 8 (p18 isoform), and a-tubulin

(C)CDK7as/as cells were transfected with siRNA targeting DR5 or control (scramble

40 mM 5-FU and 1 mM 3-MB-PP1) prior to lysis and immunoblot detection of PA

(D)CDK7as/as cells were transfected with siRNA targeting DR5 or control (scramble

5 mM nutlin-3 and 1 mM 3-MB-PP1) prior to lysis and immunoblot detection of PA

(E) Quantification of annexin V-positive populations measured by flow cytometry

siRNA targeting DR4 or FAS). Error bars indicate ± SEM of three biological replica

indicated (*).

(F) Quantification of annexin V-positive populations measured by flow cytometry

siRNA targeting DR4 or FAS). Error bars indicate the range of values obtained in

(G) Transcriptional dependency on Cdk7 activity induced by p53 stabilization mi

oncogenic transcription factors such as MYC or RUNX1.

See also Figure S6.
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