248 research outputs found

    A chemical trompe-l'\oe{}il: no iron spread in the globular cluster M22

    Get PDF
    We present the analysis of high-resolution spectra obtained with UVES and UVES-FLAMES at the Very Large Telescope of 17 giants in the globular cluster M22, a stellar system suspected to have an intrinsic spread in the iron abundance. We find that when surface gravities are derived spectroscopically (by imposing to obtain the same iron abundance from FeI and FeII lines) the [Fe/H] distribution spans ~0.5 dex, according to previous analyses. However, the gravities obtained in this way correspond to unrealistic low stellar masses (0.1-0.5 Msun) for most of the surveyed giants. Instead, when photometric gravities are adopted, the [FeII/H] distribution shows no evidence of spread at variance with the [FeI/H] distribution. This difference has been recently observed in other clusters and could be due to non-local thermodynamical equilibrium effects driven by over-ionization mechanisms, that mainly affect the neutral species (thus providing lower [FeI/H]) but leave [FeII/H] unaltered. We confirm that the s-process elements show significant star-to-star variations and their abundances appear to be correlated with the difference between [FeI/H] and [FeII/H]. This puzzling finding suggests that the peculiar chemical composition of some cluster stars may be related to effects able to spuriously decrease [FeI/H]. We conclude that M22 is a globular cluster with no evidence of intrinsic iron spread, ruling out that it has retained the supernovae ejecta in its gravitational potential well.Comment: Accepted for publication to ApJ; 33 pages, 10 figures, 6 table

    Exploring blockchain in the accounting domain: a bibliometric analysis

    Get PDF
    Purpose: Considering the growing interests in managerial and accounting issues related to blockchain technology (BT), the study aims at identifying the main research venues in this specific field. In particular, the purpose is to understand the spatial and temporal production and distribution of research documents, highlighting the most relevant topics, the most influential authors and research. Design/methodology/approach: This research carries out a bibliometric analysis of 189 research documents in the business, management and accounting areas. Data collection and refining is carried out from the Scopus database. The data analysis is based on a hybrid literature review approach using a descriptive bibliometric method, data analysis visualization (through VOSViewer software) and thematic analysis. Findings: Results indicate that research studies focused on BT and accounting have been growing exponentially over the last three years, with authors who previously focused on generalist themes, and are now facing more specific issues. Through cluster analysis, the authors propose the framework of accounting domain and blockchain technology (ADOB) to systematize and visualize the map of current studies about the BT in the accounting domain. Research limitations/implications: The analysis highlights some aspects less investigated at the first research stage in the field of BT and accounting, such as the growing need of new accounting and control processes to address the practical issues of BT implementation and the need for education and training to stimulate a proper use of BT by accountants and practitioners. Originality/value: This study is the first to adopt a bibliometric and thematic analysis to investigate BT in the accounting domain. The authors provide significant insights that could guide and foster the use of BT for accountants and practitioners, defining future research lines and a research agenda for academic researchers

    Carbon and nitrogen abundances of individual stars in the Sculptor dwarf spheroidal galaxy

    Get PDF
    We present [C/Fe] and [N/Fe] abundance ratios and CH({\lambda}4300) and S({\lambda}3883) index measurements for 94 red giant branch (RGB) stars in the Sculptor dwarf spheroidal galaxy from VLT/VIMOS MOS observations at a resolving power R= 1150 at 4020 {\AA}. This is the first time that [N/Fe] abundances are derived for a large number of stars in a dwarf spheroidal. We found a trend for the [C/Fe] abundance to decrease with increasing luminosity on the RGB across the whole metallicity range, a phenomenon observed in both field and globular cluster giants, which can be interpreted in the framework of evolutionary mixing of partially processed CNO material. Both our measurements of [C/Fe] and [N/Fe] are in good agreement with the theoretical predictions for stars at similar luminosity and metallicity. We detected a dispersion in the carbon abundance at a given [Fe/H], which cannot be ascribed to measurement uncertainties alone. We interpret this observational evidence as the result of the contribution of different nucleosynthesis sources over time to a not well-mixed interstellar medium. We report the discovery of two new carbon-enhanced, metal-poor stars. These are likely the result of pollution from material enriched by asymptotic giant branch stars, as indicated by our estimates of [Ba/Fe]> +1. We also attempted a search for dissolved globular clusters in the field of the galaxy by looking for the distinctive C-N pattern of second population globular clusters stars in a previously detected, very metal-poor, chemodynamical substructure. We do not detect chemical anomalies among this group of stars. However, small number statistics and limited spatial coverage do not allow us to exclude the hypotheses that this substructure forms part of a tidally shredded globular cluster.Comment: 18 pages, 14 figures, 3 tables. Accepted to A&

    The chemical DNA of the Magellanic Clouds -- I. The chemical composition of 206 Small Magellanic Cloud red giant stars

    Full text link
    We present the chemical composition of 206 red giant branch stars members of the Small Magellanic Cloud (SMC) using optical, high-resolution spectra collected with the multi-object spectrograph FLAMES-GIRAFFE at the ESO Very Large Telescope. This sample includes stars in three fields located in different positions within the parent galaxy. We analysed the main groups of elements, namely light- (Na), alpha- (O, Mg, Si, Ca, Ti), iron-peak (Sc, V, Fe, Ni, Cu) and s-process elements (Zr, Ba, La). The metallicity distribution of the sample displays a main peak around [Fe/H] ~ -1 dex and a weak metal-poor tail. However, the three fields display [Fe/H] distributions different with each other, in particular a difference of 0.2 dex is found between the mean metallicities of the two most internal fields.The fraction of metal-poor stars increases significantly (from ~1 to ~20%) from the innermost fields to the most external one, likely reflecting an age gradient in the SMC. Also, we found a hint of possible chemically/kinematic distinct substructures. The SMC stars have abundance ratios clearly distinct with respect to the Milky Way stars, in particular for the elements produced by massive stars (like Na, α\alpha and most iron-peak elements) that have abundance ratios systematically lower than those measured in our Galaxy. This points out that the massive stars contributed less to the chemical enrichment of the SMC with respect to the Milky Way, according to the low star formation rate expected for this galaxy. Finally, we identified small systematic differences in the abundances of some elements (Na, Ti, V and Zr) in the two innermost fields, suggesting that the chemical enrichment history in the SMC has been not uniform.Comment: 16 pages, 11 figures, 5 tables. Accepted for publication in Astronomy and Astrophysic

    The chemical DNA of the Magellanic Clouds --II. High-resolution spectroscopy of the SMC globular clusters NGC 121, NGC 339 and NGC 419

    Full text link
    The Small Magellanic Cloud (SMC) is the host of a rich system of globular clusters (GCs) that span a wide age range. The chemical composition of the SMC clusters is still poorly understood, despite their significance to chemical evolution studies. Here, we provide the first detailed chemical study of evolved giants in three distinct clusters, NGC 121 (10.5 Gyr), NGC 339 (6 Gyr), and NGC 419 (1.4 Gyr). Results are based on high-resolution spectra obtained with FLAMES at the Very Large Telescope. The chemical fingerprints of these clusters closely resemble those of SMC field stars, supporting the SMC's specific history of chemical enrichment relative to the Milky Way. The approximately solar-scaled [alpha/Fe] observed in all three clusters, independent of their [Fe/H], demonstrate the SMC's low star formation efficiency. Compared to their Milky Way counterparts, elements primarily produced by massive stars are severely underrepresented. Particularly, the young cluster NGC 419's extremely low [Zn/Fe] shows that hypernovae have contributed relatively little during the past two Gyr. The three GCs have high [Eu/Fe] values regardless of their age. This suggests that the production of the r-process elements in the SMC was extremely efficient up to 1.5 Gyr ago, with an enrichment timescale comparable to that from Type Ia supernovae. When the properties of the oldest SMC object NGC 121 are compared to those of in-situ Milky Way clusters and accreted clusters linked to the Gaia-Enceladus merger event, it is shown that the SMC had already attained the same metallicity as Gaia-Enceladus but with lower [Fe/H] ratios at the age of NGC 121. This suggests that the chemical enrichment histories of the early SMC and Gaia-Enceladus differed, and that the SMC probably had a lower mass in its early ages than Gaia-Enceladus.Comment: 17 pages, 7 figures, 9 tables. Accepted for publication in Astronomy and Astrophysic

    The chemical composition of the low-mass Galactic globular cluster NGC 6362

    Get PDF
    We present chemical abundances for 17 elements in a sample of 11 red giant branch stars in NGC 6362 from UVES spectra. NGC 6362 is one of the least massive globulars where multiple populations have been detected, yet its detailed chemical composition has not been investigated so far. NGC 6362 turns out to be a metal-intermediate ([Fe/H]=-1.07\pm0.01 dex) cluster, with its \alpha- and Fe-peak elements content compatible with that observed in clusters with similar metallicity. It also displays an enhancement in its s-process element abundances. Among the light elements involved in the multiple populations phenomenon, only [Na/Fe] shows star-to-star variations, while [Al/Fe] and [Mg/Fe] do not show any evidence for abundance spreads. A differential comparison with M4, a globular cluster with similar mass and metallicity, reveals that the two clusters share the same chemical composition. This finding suggests that NGC 6362 is indeed a regular cluster, formed from gas that has experienced the same chemical enrichment of other clusters with similar metallicity

    A Clinical Profile of Hepatitis a Patients in Jakarta, Indonesia

    Full text link
    Background: To determine the incidence of hepatitis A infections and the clinical profiles of adult patients admitted to public hospitals in Jakarta, Indonesia. Methods: This was a cross-sectional study that utilised consecutive secondary data from internal medicine wards of seven public hospitals in Jakarta between 2011 and 2013. Eligibility criteria included patients over the age of 18 years and an ICD-10 diagnosis code of B15, acute hepatitis A. Case proportion was reported per 1000 people by dividing incidence per year to total in-ward patients. Clinical profiles were reported descriptively. Laboratory results were compared and categorised into groups of patients aged below and above 25 years old. Results: Data revealed that hospitalisations of patients with hepatitis A had decreased from 2011 to 2013. 289 patients were studied, the majority were young adults (18-25 years old) and their common chief complaints were nausea (36%), fever (24%), and jaundice (21%). Higher bilirubin levels were seen in older patients. There were 13 patients coinfected with hepatitis B, one patient coinfected with hepatitis C, and one patient coinfected with HIV. Conclusions: The proportion of hepatitis A infection amongst adults admitted to public hospitals in Jakarta was low and had decreased during the study period. Most of the patients reported classical clinical manifestations. This study found that the targeted age group may benefit from receiving routine hepatitis A vaccinations

    A Chemical Trompe-L'ceil: No Iron Spread In The Globular Cluster M22

    Get PDF
    We present the analysis of high-resolution spectra obtained with UVES and UVES-FLAMES at the Very Large Telescope of 17 giants in the globular cluster M22, a stellar system suspected to have an intrinsic spread in the iron abundance. We find that when surface gravities are derived spectroscopically (by imposing to obtain the same iron abundance from FeI and FeII lines) the [Fe/H] distribution spans _0.5 dex, according to previous analyses. However, the gravities obtained in this way correspond to unrealistic low stellar masses (0.1-0.5 M⊙) for most of the surveyed giants. Instead, when photometric gravities are adopted, the [FeII/H] distribution shows no evidence of spread at variance with the [FeI/H] distribution. This difference has been recently observed in other clusters and could be due to non-local thermodynamical equilibrium effects driven by over- ionization mechanisms, that mainly affect the neutral species (thus providing lower [FeI/H]) but leave [FeII/H] unaltered. We confirm that the s-process elements show significant star-to-star variations and their abundances appear to be correlated with the difference between [FeI/H] and [FeII/H]. This puzzling finding suggests that the peculiar chemical composition of some cluster stars may be related to effects able to spuriously decrease [FeI/H]. We conclude that M22 is a globular cluster with no evidence of intrinsic iron spread, ruling out that it has retained the supernovae ejecta in its gravitational potential well

    Diminished Left Ventricular Dyssynchrony and Impact of Resynchronization in Failing Hearts With Right Versus Left Bundle Branch Block

    Get PDF
    ObjectivesWe compared mechanical dyssynchrony and the impact of cardiac resynchronization therapy (CRT) in failing hearts with a pure right (RBBB) versus left bundle branch block (LBBB).BackgroundCardiac resynchronization therapy is effective for treating failing hearts with conduction delay and discoordinate contraction. Most data pertain to LBBB delays. With RBBB, the lateral wall contracts early so that biventricular (BiV) pre-excitation may not be needed. Furthermore, the magnitude of dyssynchrony and impact of CRT in pure RBBB versus LBBB remains largely unknown.MethodsDogs with tachypacing-induced heart failure combined with right or left bundle branch radiofrequency ablation were studied. Basal dyssynchrony and effects of single and BiV CRT on left ventricular (LV) function were assessed by pressure-volume catheter and tagged magnetic resonance imaging, respectively.ResultsLeft bundle branch block and RBBB induced similar QRS widening, and LV function (ejection fraction, maximum time derivative of LV pressure [dP/dtmax]) was similarly depressed in failing hearts with both conduction delays. Despite this, mechanical dyssynchrony was less in RBBB (circumferential uniformity ratio estimate [CURE] index: 0.80 ± 0.03 vs. 0.58 ± 0.09 for LBBB, p < 0.04; CURE 0→1 is dyssynchronous→synchronous). Cardiac resynchronization therapy had correspondingly less effect on hearts with RBBB than those with LBBB (i.e., 5.5 ± 1.1% vs. 29.5 ± 5.0% increase in dP/dtmax, p < 0.005), despite similar baselines. Furthermore, right ventricular-only pacing enhanced function and synchrony in RBBB as well or better than did BiV, whereas LV-only pacing worsened function.ConclusionsLess mechanical dyssynchrony is induced by RBBB than LBBB in failing hearts, and the corresponding impact of CRT on the former is reduced. Right ventricular-only pacing may be equally efficacious as BiV CRT in hearts with pure right bundle branch conduction delay
    • …
    corecore