12 research outputs found

    Out-of-hospital cardiac arrest volumes and characteristics during the COVID-19 pandemic

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Aim The COVID-19 pandemic has significantly impacted Emergency Medical Services (EMS) operations throughout the country. Some studies described variation in total volume of out-of-hospital cardiac arrests (OHCA) during the pandemic. We aimed to describe the changes in volume and characteristics of OHCA patients and resuscitations in one urban EMS system. Methods We performed a retrospective cohort analysis of all recorded atraumatic OHCA in Marion County, Indiana, from January 1, 2019 to June 30, 2019 and from January 1, 2020 to June 30, 2020. We described patient, arrest, EMS response, and survival characteristics. We performed paired and unpaired t-tests to evaluate the changes in those characteristics during COVID-19 as compared to the prior year. Data were matched by month to control for seasonal variation. Results The total number of arrests increased from 884 in 2019 to 1034 in 2020 (p = 0.016). Comparing 2019 to 2020, there was little difference in age [median 62 (IQR 59–73) and 60 (IQR 47–72), p = 0.086], gender (38.5% and 39.8% female, p = 0.7466, witness to arrest (44.3% and 39.6%, p = 0.092), bystander AED use (10.1% and 11.4% p = 0.379), bystander CPR (48.7% and 51.4%, p = 0.242). Patients with a shockable initial rhythm (19.2% and 15.4%, p = 0.044) both decreased in 2020, and response time increased by 18 s [6.0 min (IQR 4.5–7.7) and 6.3 min (IQR 4.7–8.0), p = 0.008]. 47.7% and 54.8% (p = 0.001) of OHCA patients died in the field, 19.7% and 19.3% (p = 0.809) died in the Emergency Department, 21.8% and 18.5% (p = 0.044) died in the hospital, 10.8% and 7.4% (p = 0.012) were discharged from the hospital, and 9.3% and 5.9% (p = 0.005) were discharged with Cerebral Performance Category score ≀ 2. Conclusion Total OHCA increased during the COVID-19 pandemic when compared with the prior year. Although patient characteristics were similar, initial shockable rhythm, and proportion of patients who died in the hospital decreased during the pandemic. Further investigation will explore etiologies of those findings

    Can we predict which COVID-19 patients will need transfer to intensive care within 24 hours of floor admission?

    Get PDF
    Background Patients with COVID‐19 can present to the emergency department (ED) at any point during the spectrum of illness, making it difficult to predict what level of care the patient will ultimately require. Admission to a ward bed, which is subsequently upgraded within hours to an intensive care unit (ICU) bed, represents an inability to appropriately predict the patient's course of illness. Predicting which patients will require ICU care within 24 hours would allow admissions to be managed more appropriately. Methods This was a retrospective study of adults admitted to a large health care system, including 14 hospitals across the state of Indiana. Included patients were aged ≄ 18 years, were admitted to the hospital from the ED, and had a positive polymerase chain reaction (PCR) test for COVID‐19. Patients directly admitted to the ICU or in whom the PCR test was obtained > 3 days after hospital admission were excluded. Extracted data points included demographics, comorbidities, ED vital signs, laboratory values, chest imaging results, and level of care on admission. The primary outcome was a combination of either death or transfer to ICU within 24 hours of admission to the hospital. Data analysis was performed by logistic regression modeling to determine a multivariable model of variables that could predict the primary outcome. Results Of the 542 included patients, 46 (10%) required transfer to ICU within 24 hours of admission. The final composite model, adjusted for age and admission location, included history of heart failure and initial oxygen saturation of 6.4 or glomerular filtration rate < 46. The odds ratio (OR) for decompensation within 24 hours was 5.17 (95% confidence interval [CI] = 2.17 to 12.31) when all criteria were present. For patients without the above criteria, the OR for ICU transfer was 0.20 (95% CI = 0.09 to 0.45). Conclusions Although our model did not perform well enough to stand alone as a decision guide, it highlights certain clinical features that are associated with increased risk of decompensation

    Characteristics of COVID-19 Patients with Bacterial Co-infection Admitted to the Hospital from the Emergency Department in a Large Regional Healthcare System

    Get PDF
    Introduction The rate of bacterial coinfection with SARS‐CoV‐2 is poorly defined. The decision to administer antibiotics early in the course of SARS‐CoV‐2 infection depends on the likelihood of bacterial coinfection. Methods We performed a retrospective chart review of all patients admitted through the emergency department with confirmed SARS‐CoV‐2 infection over a 6‐week period in a large healthcare system in the United States. Blood and respiratory culture results were abstracted and adjudicated by multiple authors. The primary outcome was the rate of bacteremia. We secondarily looked to define clinical or laboratory features associated with bacteremia. Results There were 542 patients admitted with confirmed SARS‐CoV‐2 infection, with an average age of 62.8 years. Of these, 395 had blood cultures performed upon admission, with six true positive results (1.1% of the total population). An additional 14 patients had positive respiratory cultures treated as true pathogens in the first 72 h. Low blood pressure and elevated white blood cell count, neutrophil count, blood urea nitrogen, and lactate were statistically significantly associated with bacteremia. Clinical outcomes were not statistically significantly different between patients with and without bacteremia. Conclusions We found a low rate of bacteremia in patients admitted with confirmed SARS‐CoV‐2 infection. In hemodynamically stable patients, routine antibiotics may not be warranted in this population

    Fluid Resuscitation and Progression to Renal Replacement Therapy in Patients With COVID-19

    No full text
    Background Coronavirus disease 2019 (COVID-19) is associated with respiratory symptoms and renal effects. Data regarding fluid resuscitation and kidney injury in COVID-19 are lacking, and understanding this relationship is critical. Objectives To determine if there is an association between fluid volume administered in 24 h and development of renal failure in COVID-19 patients. Methods Retrospective chart review; 14 hospitals in Indiana. Included patients were adults admitted between March 11, 2020 and April 13, 2020 with a positive test for severe acute respiratory syndrome coronavirus 2 within 3 days of admission. Patients requiring renal replacement therapy prior to admission were excluded. Volumes and types of resuscitative intravenous fluids in the first 24 h were obtained with demographics, medical history, and other objective data. The primary outcome was initiation of renal replacement therapy. Logistic regression modeling was utilized in creating multivariate models for determining factors associated with the primary outcome. Results The fluid volume received in the first 24 h after hospital admission was associated with initiation of renal replacement therapy in two different multivariate logistic regression models. An odds ratio of 1.42 (95% confidence interval 1.01–1.99) was observed when adjusting for age, heart failure, obesity, creatinine, bicarbonate, and total fluid volume. An odds ratio of 1.45 (95% confidence interval 1.02–2.05) was observed when variables significant in univariate analysis were adjusted for. Conclusions Each liter of intravenous fluid administered to patients with COVID-19 in the first 24 h of presentation was independently associated with an increased risk for initiation of renal replacement therapy, supporting judicious fluid administration in patients with this disease

    Deprivation, diet, and food-retail access: findings from the Leeds 'food deserts' study

    No full text
    Within a context of public policy debate in the United Kingdom on social exclusion, health inequalities, and food poverty, the metaphor of the 'food desert' caught the imagination of those involved in policy development. Drawing from a major cross-disciplinary investigation of food access and food poverty in British cities, the authors report in this paper findings from the first 'before/after' study of food consumption in a highly deprived area of a British city experiencing a sudden and significant change in its food-retail access. The study has been viewed as the first opportunity in the United Kingdom to assess the impact of a non-healthcare intervention (specifically a retail-provision intervention) on food-consumption patterns, and by extension diet-related health, in such a deprived, previously poor-retail-access community. The paper offers evidence of a positive but modest impact of the retail intervention on diet, and the authors discuss the ways in which their findings are potentially significant in the context of policy debate
    corecore