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ABSTRACT 

Background 

Patients with COVID-19 can present to the emergency department (ED) at any point during the spectrum 

of illness, making it difficult to predict what level of care the patient will ultimately require.  Admission 

to a ward bed, which is subsequently upgraded within hours to an intensive care unit (ICU) bed, 

represents an inability to appropriately predict the patient’s course of illness.  Predicting which patients 

will require ICU care within 24 hours would allow admissions to be managed more appropriately. 

Methods 

This was a retrospective study of adults admitted to a large healthcare system, including 14 hospitals 

across the state of Indiana. Included patients were aged ≥ 18 years, were admitted to the hospital from the 

ED, and had a positive PCR test for COVID-19. Patients directly admitted to the ICU or in whom the 

PCR test was obtained > 3 days after hospital admission were excluded. Extracted data points included 

demographics, comorbidities, ED vital signs, laboratory values, chest imaging results, and level of care on 

admission. The primary outcome was a combination of either death or transfer to ICU within 24 hours of 

admission to the hospital. Data analysis was performed by logistic regression modeling to determine a 

multivariable model of variables that could predict the primary outcome.  
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Of the 542 included patients, 46 (10%) required transfer to ICU within 24 hours of admission. The final 

composite model, adjusted for age and admission location, included history of heart failure, initial oxygen 

saturation of <93%, plus either WBC > 6.4 or GFR < 46. The odds ratio for decompensation within 24 

hours was 5.17 (CI 2.17-12.31) when all criteria were present. For patients without the above criteria, the 

odds ratio for ICU transfer was 0.20 (0.09 to 0.45). 

Conclusions 

Although our model did not perform well enough to stand alone as a decision guide, it highlights certain 

clinical features which are associated with increased risk of decompensation.   

 

INTRODUCTION 

SARS-CoV-2 is a novel coronavirus first identified in Wuhan, China in November of 2019, 

which has quickly spread globally, with the United States accounting for nearly a quarter of all cases.
1–3

  

As of the writing of this manuscript, cases have exploded exponentially in the United States after a brief 

period of stagnated growth.
4
 Worldwide, the SARS-CoV-2 pandemic has killed hundreds of thousands of 

patients, with reported mortality ranging from 0.4% to 7%.
5
 Those who are elderly or comorbid have the 

highest risk of death.
6,7

   

While most patients have mild illness at onset, some are completely asymptomatic, and others 

eventually manifest severe symptoms requiring intensive care unit (ICU) hospitalization.
6–9

 Factors such 

as rapid disease progression, variability in decisions by inpatient and ED providers, and ICU bed 

availabilities can all complicate the process of predicting what level of care will be required for these 

patients.  However, admission to a non-ICU bed, which is subsequently upgraded within hours to an ICU 

level of care, can put undue strain on the inpatient teams, who have to admit the patient: spending 

substantial time gathering information and writing orders, only to have another (ICU) team have to repeat 

the entire process again just several hours later. Similarly, admission to an ICU bed, which is then 

downgraded to a medical bed within 24 hours, may be problematic especially when there are bed 

shortages. In addition, placing a COVID-19 patient into a room that they quickly leave requires an 

extensive decontamination process, and ultimately costs precious availability of an inpatient bed.  

Predicting which patients are going to require ICU or ventilator support within 24 hours, would 

allow more appropriate allocation of resources from the onset of admission, improving patient care and 

eliminating repetitive work and freeing up space and providers to care for the many other patients who 

need it during this pandemic.  A
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 The primary objective of this study was to determine clinical variables associated with need for 

an upgrade to ICU care within 24 hours of admission to a non-ICU floor.  

METHODS 

This retrospective electronic medical record (EMR) review was approved as exempt research by 

the local institutional review (Indiana University) board. 

Patients and Settings 

Data collection took place across a large integrated healthcare system which includes 14 hospitals 

across the state of Indiana. Annual ED volume across the hospitals ranges from approximately 6,000 to 

90,000, and the system sees over 400,000 combined ED patients per year. 

Included patients were adults aged ≥ 18 years admitted to the hospital from the ED with a 

positive PCR test for COVID-19 that was drawn in the emergency department from March 1, 2020 – 

April 10, 2020. Patients with a PCR test drawn > 3 days after hospital admission were excluded, as they 

may have been infected in the hospital after being admitted. For this study, patients admitted directly to 

the ICU from the ED were also excluded. No further exclusion criteria were applied. 

Data Collection 

Data was abstracted using a standardized form and was entered into REDCap,
10

 a secure data 

collection instrument. Data included days from symptom onset to ED presentation, basic demographics 

such as age and gender, comorbidities, ED vital signs, laboratory values including culture results, chest 

imaging results, and level of care upon admission [medical/surgical ward vs. progressive care unit (PCU): 

a “step down” level of care that is higher acuity than medical/surgical ward but lower acuity than 

intensive care.] Level of care was defined based on the computerized order entered by the admitting 

hospitalist team. Chest imaging results were labeled as either “clear,” “single lobe infiltrates,” “multi-

lobar infiltrates,” or “clear x-ray with involvement on CT only.” Vital signs extracted were the first blood 

pressure, heart rate, oxygen saturation, temperature, and respiratory rate recorded in the ED record. The 

last values recorded while the patient was still in the ED for blood pressure, heart rate, oxygen saturation, 

and respiratory rate were also extracted. If an ambulatory oxygen saturation was documented in the EMR, 

it was extracted and recorded separately. Comorbidities were based on chart review of the ED note, 

admission note, and any clinic or primary care notes available in the EMR. The presence or absence of the 

following comorbidities was recorded for each patient:  smoking, obesity, hypertension, diabetes, 

hyperlipidemia, heart failure, previous ischemic heart disease, active cancer, dialysis dependent renal A
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disease, chronic obstructive pulmonary disease (COPD), asthma, current chemotherapy, human 

immunodeficiency virus (HIV), history of organ transplantation, and current use of immunosuppressants.  

Most data, including basic demographics such as age and gender, ED vital signs, laboratory 

values, level of care upon admission (medical/surgical ward vs progressive care unit), were automatically 

extracted via an EMR data pull.  Some data points, such as radiology reports, comorbidities, and patient 

outcomes (including patient death or intubation) were manually abstracted by trained physician 

researchers or a trained research assistant.  As most of the data points were automatically pulled from the 

EMR, there was no interobserver variability calculated. 

Outcomes 

The primary outcome was a combination of either death or transfer to ICU within 24 hours of 

admission to the hospital. The time of ICU transfer was based on either transfer orders or timing of a 

physician note stating the patient would be transferred to the ICU, whichever came first. A note indicating 

an ICU transfer that did not subsequently occur was not counted as an event. Secondary outcomes were 

death within 24 hours, death prior to hospital discharge, intubation within 24 hours, and intubation at any 

time during hospitalization. 

Statistical Analysis 

Data are described using means (with standard deviation), median (with interquartile range), or 

proportions (with 95% confidence interval), where appropriate; normality assumption was checked using 

the Shapiro-Wilk test. Given that limiting analysis to patients with complete data (complete case analysis) 

can lead to bias in study results
11

, multiple imputation (MI) was performed. Variables where missingness 

was  30% were imputed under the assumption that they were missing at random (MAR). Data were 

determined to have an arbitrary missingness pattern and therefore the fully conditional specification 

approach was used, with linear regression used to impute continuous variables and logistic regression 

used for categorical variables. Cut-points for continuous predictor variables were determined using 

Youden’s J statistic; to meet the distributional assumptions of the imputation model, right-skewed 

continuous data were log-transformed prior to imputation, then back-transformed prior to determination 

of the optimal cut-point. Auxiliary variables for the imputation model were selected where correlation 

(Pearson’s r) with imputed variables was  0.4, or where aggregate values (or proportions) were 

significantly different between those with complete versus missing data on bivariate analysis (e.g., 

significantly different age between those with versus without missing values for imputed variable X).The 

number of imputations was set to the maximum percent of missing data (m=30), with 100 burn-in 

iterations before the first imputation step and 25 iterations between successive steps, which achieved A
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>95% relative efficiency for all imputed variables. Convergence of the imputation models was assessed 

by visual inspection of trace plots. In the final model, imputed variables (number imputed, percent 

missing) were: troponin (n=116, 21.40%), procalcitonin (n=162, 29.89%), total leukocyte count (n=2, 

0.37%), lymphocyte count (n=22, 4.06%), GFR (n=9, 1.66%), plus cut-points for each. Auxiliary 

variables included aspartate aminotransferase (AST), age, respiratory rate, initial ED oxygen saturation, 

CO2,  death or intubation during hospitalization, obesity, history of heart failure (HF), ischemic heart 

disease, diabetes mellitus, or chronic obstructive pulmonary disease (COPD); the dependent variable for 

the primary outcome (ICU transfer within 24 hours) was also included. 

After completion of the imputation model, logistic regression (LR) was used to assess univariate 

association between clinical and laboratory variables and the primary outcome; those with a p-value <0.2 

were retained for further consideration in a multivariable (MV) model. An events-per-variable ratio of ~ 

10:1 was used to guard against model over-fitting. The final MV model was selected by comparing 

Akaikie’s Information Criteria, area under the receiver operating characteristic curve (AUC), and results 

of the Hosmer-Lemeshow test. Multi-collinearity between continuous variables was assessed with 

variance inflation factor. After selection of the final MV model, results from the 30 imputed data sets 

were combined and analyzed to determine the pooled parameter estimates with standard errors. 

Permutations of components of the final MV model were then explored for “collapse” into a single 

composite variable (i.e., A and B and C) for use as a clinical decision aid, with final selection of 

components and performance performed as previously described. Finally, age (given the importance 

attributed to this factor by clinicians when making admission decisions) and disposition location (our data 

set included patients admitted to both the floor and PCU and thus adjustment accounts for potential 

differences in odds of ultimately needing ICU level care between these groups) were added as covariates 

to the composite variable model to assess its independent association with the primary outcome. That is, 

the association of the composite variable with the primary outcome, regardless of patient age or location 

of disposition from the ED. 

Sensitivity Analyses 

For the imputation models, to test the MAR assumption, 10 addition MI models, with 30 

imputations each, were created under the assumption of missing not at random. The first 5 multiplied the 

continuous variables by a scale factor of 0.5-0.9, in steps of 0.1. The next 5 were created using only 1 

class of completely-observed categorical variables (heart failure=yes, COPD=yes, diabetes mellitus=no, 

in-hospital death=no, in-hospital intubation=yes). LR models, with the same variables as used in the main 

analyses, were then constructed, with pooled effects analyzed as previously described. A change in the 

direction of effect for any of the pooled parameter estimates was taken as evidence of violation of the 
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MAR assumption. To assess for bias in the MI models, complete case analysis was performed for each of 

the final LR models used in the main analysis; change in the direction of effect for any of the parameter 

estimates was taken as evidence of bias. A significance level of 0.05 was set for all comparisons. 

Statistical analysis was performed using SAS version 9.4 (SAS Institute, Cary, NC). 

RESULTS: 

Of 751 patents with PCR confirmed COVID-19, 542 were initially admitted, 86 of whom were 

admitted directly to the ICU and were excluded from this study. Among the 456 included patients, the 

average age was 62.8 and 50.2% were female. Table 1 provides further demographic information. 

Decompensation requiring ICU care within 24 hours occurred in 46 (10%) patients, of whom 29 (63.0%) 

were intubated within 24 hours of admission.  No patients died within 24 hours. By the end of 

hospitalization, 4 (8.7%) had required hemofiltration for new onset renal failure, 33 (71.8%) had 

undergone intubation, and 9 (19.6%) died.   

For fully-observed variables (Table 2), on univariate LR, the following factors were associated 

with increased odds of the primary outcome with a p-value  0.2: PCU admission (odds ratio [OR] 5.52, 

CI 2.93-10.45), history of HF (OR 2.20 , CI 1.02-4.72), multi-focal findings on chest radiography (OR 

2.74, CI 1.19-6.27), initial respiratory rate (OR 1.10, CI 1.03-1.14), initial ED oxygen saturation <93% 

(OR 4.87, CI 2.41-9.87), last ED respiratory rate (OR 1.10,CI 1.04-1.16), and receiving non-rebreather 

(NRB) mask or greater supplemental oxygen upon ED presentation (OR 6.18, CI 2.09-18.28), and 

Hispanic versus Caucasian race (OR 2.76, CI 1.07-7.11).  Reduced odds of the primary outcome with a p-

value  0.2 were found for initial ED oxygen saturation (OR 0.88, CI 0.82-0.93, per 1 unit increase), last 

form of supplemental oxygen of NRB or more (OR 0.25, CI 0.12-0.51), and female versus male biologic 

sex (OR 0.40, CI 0.21-0.77). For imputed variables, elevated white blood cell count (OR 3.09, CI 1.58-

6.04) was associated with decompensation, while higher lymphocyte count (OR 0.59, CI 0.30-1.15), and 

higher glomerular filtration rate (OR 0.33, CI 0.13-0.86) were associated with a decreased probability of 

decompensation with a p-value  0.2. Percent missingness for imputed variables was 0.37% (n=2) for 

WBC, 4.06% (n=22) for lymphocyte count, and 1.66% (n=9) for GFR. Notably, age, date or week of ED 

visit, and duration of symptoms were not associated with the primary outcome. 

 The final multivariable (MV) model included disposition location: ward versus PCU (OR 4.17, 

CI 2.12-8.33), history of HF (OR 2.54, CI 1.01-6.39), WBC count (OR 1.14, CI 1.03-1.26, per 1 unit 

increase), initial ED oxygen saturation (OR 1.14, CI 1.08-1.22, per 1 unit decrease), and GFR ≤ 46 (OR 

6.63, CI 2.03-21.64) (Model 1 in Table 3). AUC for this model was 0.84 (standard error (SE) 0.03, CI A
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0.78-0.89). No significant interactions were found amongst final variables or other clinically plausible 

(i.e., “by meaning”) scenarios and thus none were included in the final model. 

 We derived a composite outcome variable using factors from the final MV model that would be 

available to EPs at the time of disposition location decision (Model 2a/2b in Table 3). GFR and WBC 

were dichotomized at a cut-point determined by Youden’s J statistic (46 and 6.4, respectively). Initial ED 

oxygen saturation was dichotomized at 93%, which was felt to be more clinically useful than the 

Youden’s cut-point of 82%, and remained a statistically significant discriminator of the primary outcome.  

We ultimately derived a set of criteria and evaluated the utility of the instrument to identify either 

the highest risk or lowest risk patients. For the composite of history of HF, plus initial oxygen saturation 

of <93%, plus either WBC > 6.4 or GFR < 46 (Model 2a in Table 3), the OR of ICU transfer was 5.43 (CI 

1.74-16.99), AUC 0.54 (SE 0.02, CI 0.50-0.59) Only 14 patients (3.07%) were classified as high risk by 

this model. of whom 5 (35.7%) ultimately needed transfer to the ICU within 24 hours.  Sensitivity for the 

model was 0.11 (CI 0.02-0.20), specificity was 0.98 (CI 0.96-0.99) with a positive predictive value of 

0.36 (CI 0.11-0.61). After adjusting for age and admission location (ward versus PCU), the composite 

variable had an OR for the primary outcome of 5.26 (CI 1.45-19.10) with an AUC of 0.76 (SE 0.04, CI 

0.68-0.83) (Model 3a in Table 3).   

We additionally assessed whether patients without the high risk criteria could safely be 

considered “low risk” (Model 2b in Table 3). The low risk cohort of patients were thus those with no 

history of HF, initial oxygen saturation of ≥93%, plus either WBC ≤ 6.4 or GFR ≥46.  The OR for ICU 

transfer in this group of patients was 0.20 (CI 0.09- 0.46) with an AUC of 0.66 (SE 0.03, CI 0.60-0.72) 

(Model 2b in Table 3). After adjusting for age and admission location (ward versus PCU), this composite 

variable had an OR for the primary outcome of 0.21 (CI 0.09-0.49) with an AUC of 0.81 (SE 0.03, CI 

0.75-0.86) (Model 3b in Table 3).   Of 202 patients (44.3%) who were classified as low risk by this 

model, 7 (3.5%) decompensated within 24 hours. Of the remaining 254 patients that were not qualified as 

low risk, 39 (15.4%%) were transferred to the ICU within 24 hours. Sensitivity was 0.85 (CI 0.74-0.95) 

and specificity was 0.48 (CI 0.43-0.52).  Positive predictive value was 0.16 (CI 0.11-0.20) and negative 

predictive value was 0.96 (CI 0.94-0.99). Results of the sensitivity analyses were not different from 

results of the imputed data set and therefore only the latter are presented. 

DISCUSSION: 

Patients with COVID-19 can present to the ED at any point during the spectrum of illness, 

making it difficult to determine which patients will decompensate after admission. Studies have 

demonstrated that risk factors such as obesity, old age, coronary artery disease have been correlated with A
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poorer outcomes, but these outcomes are not specific to any particular timeframe, particularly in reference 

to hospital presentation.
7,12,13

 A recent study demonstrated that those with higher respiratory rates, lower 

pulse oximeter readings, and higher oxygen requirements could help predict which admitted patients 

would develop respiratory decompensation within 24 hours.  However, there has been limited data on 

predictive models that can assist the crucial disposition decision: floor or ICU?
14,15

 

In this retrospective study, we found that approximately 10% of COVID-19 patients admitted to the floor 

subsequently decompensated and required ICU transfer, which is similar to previous studies.
16

  Our 

approach to modeling the primary outcome occurred in several steps. We first derived a model to 

optimize AUC; this model contained both continuous and categorical variables [including disposition 

location (ward versus PCU) as a variable] (Model 1 in Table 3). While a model of this type is informative, 

application at the bedside can be difficult, and therefore we created a dichotomous decision aid model 

(Model 2 in Table 3). Disposition location was excluded from this model since this information is not 

available to the ED clinician. However, because our data were compiled after admission (to detect 

occurrence of the primary outcome) we created a final model that adjusted for disposition location in 

order to understand the independent association of our decision aid with ICU transfer (Model 3 in Table 

3). Age was also included as a covariate in this model “by meaning” as it often influences disposition 

decisions by ED clinicians.  

We chose to adjust for age rather than including it in the decision aid to prevent the loss of signal 

associated with dichotomizing a continuous variable. Other risk factors associated with increased odds of 

the primary outcome but not retained due to significance included bilateral findings on chest radiography, 

initial and last documented ED respiratory rate, and requiring supplemental oxygen upon ED 

presentation. Interestingly, our study differs from prior literature that link co-morbidities such as type 2 

diabetes, coronary artery disease, or obesity with increased illness severity.
12,17,18

 We found that these risk 

factors (specifically, hypertension, hyperlipidemia, COPD, smoking history, obesity, coronary artery 

disease and length of disease) were not significant for predicting who would need critical care within 24 

hrs. Notably, these factors have previously been shown to be related to final disease severity such as 

mortality, but in our study were not helpful in predicting 24-hour decompensation.  

Our final composite (dichotomous) decision aid to identify “high-risk” patients consisted of 

history of heart failure, initial oxygen saturation of <93%, WBC >6.4 or GFR <46, and was associated 

with an OR of 5.43 predicting ICU transfer, with a high specificity of 0.98 and low sensitivity of 0.11. 

Although this rule was highly specific, very few patients met the criteria for high risk and there was a 

high occurrence of false positive making its clinical utility doubtful.  A
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We also assessed the ability of the instrument to identify those at lowest risk: those patients with 

no history of heart failure, initial oxygen saturation of ≥93%, and WBC ≤6.4 or GFR ≥46.  Sensitivity for 

this model was 0.85 and specificity was 0.48, with a negative predictive value of 0.96. This aid could 

potentially have value at the bedside as providers could be reassured that patients meeting these criteria 

have low risk of needing an ICU bed within 24 hours of admission. 

While very few patients who are deemed low risk by this model decompensated within 24 hours, 

specificity was quite low, so failure to qualify as “low risk” should not automatically be interpreted as 

“high risk,” or prompt an ICU admission.  Discriminatory performance increased after adjusting for age 

and disposition location, meaning that use of our decision aid in the ED, regardless of patient age, would 

result in 81% being correctly classified. We believe that with a sensitivity of 85%, this low-risk decision 

model can be combined with clinical gestalt to streamline decision-making in the ED by identifying 

which patients are low risk for decompensating within 24 hours and thus can be safely admitted to a floor 

bed. Patients who fail to qualify as low risk by our model, require further clinical judgement to aid in the 

disposition location in order to prevent over-triage to the ICU. 

There are multiple future implications from this study.  External validation of the tool, as well as 

comparison to clinician judgement alone would help address this question more completely.  A larger 

patient population would allow new studies to look at which risk factors could predict mortality within 24 

hours.  There may also be value in assessing whether disposition destinations (ICU vs non-ICU) change 

over time, as experience with COVID-19 continues to grow, or as hospitals fluctuate in their capacity to 

provide ICU care. Lastly, models such as ours can potentially be used to help direct which patients would 

require certain treatments to improve outcomes.  

LIMITATIONS: 

  There were several important limitations in our study. The most prominent limitation in our 

study is that the best fit model we could design appears to have limited clinical utility. We initially strived 

to find a specific model that could help determine which patients were at high risk of needing an ICU bed 

within 24 hours of admission.  Our model (2a/3a in Table 3) was highly specific but had such low 

sensitivity and identified so few patients as high risk that it would have a limited role at the bedside. 

We reversed the criteria to try to identify low risk patients (2b/3b in Table 3) for decompensation.  

The utility of this version was more promising, with higher sensitivity and moderate specificity and a 

negative predictive value of 0.96.  However, like many clinical decision rules, both versions neglect 

clinical gestalt.
19

 Further, similar to many other COVID-19 specific decision rules, our model had 

different “high-risk” variables from other models published.  For example, the quick COVID-19 Severity A
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Index found a correlation with respiratory rate while the COVID-GRAM critical illness risk score 

includes such variables as cancer history and direct bilirubin.
16,20

 These models (including our own) may 

have different clinical/laboratory variables because of inherent differences between patient populations as 

well as statistical methodology.  Because of these limitations, we suggest that when using these models, 

clinicians also add their clinical judgment when making disposition decisions. 

Second, we only included those patients with a documented positive COVID-19 rapid PCR test. 

This could have resulted in exclusion of patients who presented with COVID-19 like symptoms but never 

had a test drawn prior to admission, although this is unlikely because the system was testing nearly all 

admissions during this time period. Because of the variable reported sensitivity of the PCR test (70%-

83%),
21,22

 we more likely could have excluded patients who had a false negative COVID-19 test but either 

never got a repeat COVID-19 test or had one that was performed ≥ 3 days after admission.  We assume 

these cases are rare as most patients who had a negative test and had severe COVID-19 like symptoms 

frequently had repeat testing ordered by their admitting provider to confirm the diagnosis, and almost no 

patients were excluded for a positive test ≥ 3 days from admission. 

 As this was during the beginning of the pandemic, our facilities (like many other facilities across 

the United States) did not have rapid tests and results typically took 24-48 hours to come back. ED 

physicians, therefore, would not have known the COVID-19 status of the patient while making their 

admission decision. However, during this time, the clinical suspicion for COVID-19 patients was very 

high and we assume that these disposition decisions were not much different from the current 

environment, where COVID-19 tests in different locations may result in hours to days.  

 As this was a retrospective chart review, the decision to admit to a non-ICU vs an ICU floor was 

up to provider discretion. It is possible that some providers would have admitted some of these patients to 

the ICU initially. Conversely, some patients admitted to the ICU, and subsequently excluded from our 

patient population, might have been admitted to a non-ICU setting by a different provider. At most 

facilities, the decision about what level of care a patient is admitted to is made jointly by the emergency 

physician and an admitting provider. It was not possible to ascertain if there were disagreements about 

level of care initially, or how this might have impacted our results. Furthermore, though rare in our 

facilities, the lack of ICU bed availabilities could have contributed to a non-ICU floor admission.  We did 

not have a way to control for variation in admitting practices or for daily bed availabilities, but our 10% 

decompensation rate is high enough to suggest that there are systematic challenges related to determining 

which of these patients are likely to deteriorate quickly, rather than a series of “triage errors” by a subset 

of inpatient or emergency providers. Similarly, for any number of reasons, such as bed availability or A
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patient choice, some patients may have been discharged and then re-presented within 24 hours requiring 

admission to the ICU.  

There were several patients with missing variables.
 
The decision to order labs and imaging was 

completely dependent on the provider.  Most patients had basic laboratory testing ordered, but more 

specialized labs and imaging studies such as LDH, d-dimer, lactates, and CT scans were inconsistently 

ordered. If patients deemed higher risk by their clinicians underwent more labs testing, there could be a 

bias towards more abnormal findings, potentially confounding our results. Similarly, the providers were 

not blind to any of the clinical data which could have confounded our results if providers were more 

likely to upgrade a patient to ICU status if they had abnormal labs. It seems likely that most of the 

patients who met the primary outcome had a legitimate need for ICU care, as the majority were intubated 

within 24 hours of arrival.  Lastly, this data was also collected from a single healthcare system in one 

state, which may limit generalizability. 

CONCLUSIONS: 

 Our model of history of HF, initial oxygen saturation at a cutoff of 93%, and either WBC at a 

cutoff of 6.4 or GFR at a cutoff of 46 can assist in predicting which COVID-19 patients initially thought 

to not require ICU level care are either particularly high or low risk for decompensating and requiring 

ICU admission within the first 24 hours. However, its application does require further validation and it 

did not perform well enough to stand alone as a decision guide. 
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Table 1. Characteristics of admitted patients who required ICU care within 24 hours of admission 

compared those who did not 

ICU (N= 46) 

Non-ICU (N= 

410) 

Age (years), Average 

(Range) 62.2 (35-94) 62.9 (21-98) 

Gender (%) 

   Female 14 (30.4%) 215 (52.4%) 

   Male 32 (69.6%) 195 (47.5%) 

Race 

   White 22 (47.8%) 217 (52.9%) 

   Black 17 (37.0%) 159 (38.8%) 

   Hispanic 7 (15.2%) 25 (6.1%) 

   Asian 0 (0.0%) 8 (2.0%) 

   Native Hawaiian 0 (0.0%) 1 (0.2%) 

Co-morbidities 

   Obesity 22 (47.8%) 150 (36.6%) 

   Smoking 2 (4.3%) 34 (8.3%) 

   Diabetes mellitus 16 (34.8%) 150 (36.6%) 

   Hyperlipidemia 28 (60.9%) 160 (39.0%) 

   Hypertension 30 (65.2%) 271 (66.1%) 

   Heart failure 10 (21.7%) 46 (11.2%) 

   Ischemic Heart Disease 7 (15.2%) 55 (13.4%) 

   Cancer 2 (4.3%) 11 (2.7%) 

   COPD 5 (10.9%) 48 (11.7%) 

   Asthma 7 (15.2%) 42 (10.2%) 

   HIV/AIDS 1 (2.2%) 3 (0.7%) 
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Table 2. Factors associated with decompensation within 24 hours with p-value ≤ 0.2 

Factor Odds ratio 95% CI 

Receiving non-rebreather mask or greater supplemental oxygen upon ED 

presentation 6.18 2.09-18.28 

PCU admission 5.52 2.93-10.45 

Initial ED oxygen saturation <93% 4.387 2.41-9.87 

Higher WBC 3.09 1.58-6.04 

Lower GFR 3.03 1.16-7.69 

Hispanic race 2.76 1.07-7.11 

Multi-focal findings on chest radiography 2.74 1.19-6.27 

Male sex 2.50 1.30-4.76 

History of heart failure 2.20 1.02-4.72 

Lower lymphocyte count 1.69 0.87-3.33 

Last ED respiratory rate 1.10 1.04-1.16 

Initial respiratory rate 1.10 1.03-1.14 
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Table 3.  Three models and their test characteristics 

Model OR (CI) AUC Sens Spec PPV/NPV 

1 

•Disposition location (Ward v PCU)

•history of HF

•WBC count

•initial O2 saturation

•GFR ≤ 46

• 4.17 (2.12-8.33)

•2.54 (1.01-6.39)

•1.14 (1.03-1.26)

•1.14 (1.08-1.22)

•6.63 (2.03-21.6)

0.84 * * * 

2a 

• History of heart failure AND

•initial oxygen saturation <93% AND

•(WBC > 6.4 OR GFR <46) 

5.43 (1.74-16.99) 0.54 0.11 0.98 PPV: 0.36 

2b 

• No history of heart failure AND

•initial oxygen saturation ≥93% AND

•(WBC ≤ 6.4 OR GFR ≥46) 

0.20 (0.09-0.46) 0.66 0.85 0.48 NPV:0.96 

3a 

Adjusted for age and disposition location 

(ward versus PCU)  

•History of heart failure AND

•initial oxygen saturation <93% AND

•(WBC> 6.4 OR GFR <46) 

5.26 (1.45-19.10) 0.76  * * * 

3b 

Adjusted for age and disposition location 

(ward versus PCU) 

• No history of heart failure AND

•initial oxygen saturation ≥93% AND

•(WBC ≤ 6.4 OR GFR ≥46) 

0.21 (0.09-0.49) 0.81 * * * 

 

*No sensitivity/specificity/NPV presented because model 1 and 3 included non-binary variables or 

included adjusted variables respectively. 
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