13,013 research outputs found

    Using Self-Adaptive Evolutionary Algorithms to Evolve Dynamism-Oriented Maps for a Real Time Strategy Game

    Get PDF
    9th International Conference on Large Scale Scientific Computations. The final publication is available at link.springer.comThis work presents a procedural content generation system that uses an evolutionary algorithm in order to generate interesting maps for a real-time strategy game, called Planet Wars. Interestingness is here captured by the dynamism of games (i.e., the extent to which they are action-packed). We consider two different approaches to measure the dynamism of the games resulting from these generated maps, one based on fluctuations in the resources controlled by either player and another one based on their confrontations. Both approaches rely on conducting several games on the map under scrutiny using top artificial intelligence (AI) bots for the game. Statistic gathered during these games are then transferred to a fuzzy system that determines the map's level of dynamism. We use an evolutionary algorithm featuring self-adaptation of mutation parameters and variable-length chromosomes (which means maps of different sizes) to produce increasingly dynamic maps.TIN2011-28627-C04-01, P10-TIC-608

    A spatially-structured PCG method for content diversity in a Physics-based simulation game

    Get PDF
    This paper presents a spatially-structured evolutionary algorithm (EA) to procedurally generate game maps of di ferent levels of di ficulty to be solved, in Gravityvolve!, a physics-based simulation videogame that we have implemented and which is inspired by the n- body problem, a classical problem in the fi eld of physics and mathematics. The proposal consists of a steady-state EA whose population is partitioned into three groups according to the di ficulty of the generated content (hard, medium or easy) which can be easily adapted to handle the automatic creation of content of diverse nature in other games. In addition, we present three fitness functions, based on multiple criteria (i.e:, intersections, gravitational acceleration and simulations), that were used experimentally to conduct the search process for creating a database of maps with di ferent di ficulty in Gravityvolve!.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Testing strong line metallicity diagnostics at z~2

    Full text link
    High-z galaxy gas-phase metallicities are usually determined through observations of strong optical emission lines with calibrations tied to the local universe. Recent debate has questioned if these calibrations are valid in the high-z universe. We investigate this by analysing a sample of 16 galaxies at z~2 available in the literature, and for which the metallicity can be robustly determined using oxygen auroral lines. The sample spans a redshift range of 1.4 < z < 3.6, has metallicities of 7.4-8.4 in 12+log(O/H) and stellar masses 10^7.5-10^11 Msun. We test commonly used strong line diagnostics (R23, O3, O2, O32, N2, O3N2 and Ne3O2 ) as prescribed by four different sets of empirical calibrations, as well as one fully theoretical calibration. We find that none of the strong line diagnostics (or calibration set) tested perform consistently better than the others. Amongst the line ratios tested, R23 and O3 deliver the best results, with accuracies as good as 0.01-0.04 dex and dispersions of ~0.2 dex in two of the calibrations tested. Generally, line ratios involving nitrogen predict higher values of metallicity, while results with O32 and Ne3O2 show large dispersions. The theoretical calibration yields an accuracy of 0.06 dex, comparable to the best strong line methods. We conclude that, within the metallicity range tested in this work, the locally calibrated diagnostics can still be reliably applied at z~2.Comment: 12 pages, 8 Figures, accepted for publication in MNRA

    Double-diffusive instabilities of a shear-generated magnetic layer

    Get PDF
    Previous theoretical work has speculated about the existence of double-diffusive magnetic buoyancy instabilities of a dynamically evolving horizontal magnetic layer generated by the interaction of forced vertically sheared velocity and a background vertical magnetic field. Here we confirm numerically that if the ratio of the magnetic to thermal diffusivities is sufficiently low then such instabilities can indeed exist, even for high Richardson number shear flows. Magnetic buoyancy may therefore occur via this mechanism for parameters that are likely to be relevant to the solar tachocline, where regular magnetic buoyancy instabilities are unlikely.Comment: Submitted to ApJ

    The Evolution of a Double Diffusive Magnetic Buoyancy Instability

    Get PDF
    Recently, Silvers, Vasil, Brummell, & Proctor (2009), using numerical simulations, confirmed the existence of a double diffusive magnetic buoyancy instability of a layer of horizontal magnetic field produced by the interaction of a shear velocity field with a weak vertical field. Here, we demonstrate the longer term nonlinear evolution of such an instability in the simulations. We find that a quasi two-dimensional interchange instability rides (or "surfs") on the growing shear-induced background downstream field gradients. The region of activity expands since three-dimensional perturbations remain unstable in the wake of this upward-moving activity front, and so the three-dimensional nature becomes more noticeable with time.Comment: 9 pages; 3 figures; accepted to appear in IAU symposium 27

    A single structured light beam as an atomic cloud splitter

    Full text link
    We propose a scheme to split a cloud of cold non-interacting neutral atoms based on their dipole interaction with a single structured light beam which exhibits parabolic cylindrical symmetry. Using semiclassical numerical simulations, we establish a direct relationship between the general properties of the light beam and the relevant geometric and kinematic properties acquired by the atomic cloud as its passes through the beam.Comment: 10 pages, 5 figure

    Use of Mobile Phone Computing for Development of Student 21st Century Skills

    Get PDF
    Mobile phone computing enables immediate capture and transfer of data, images, notes and experiences from the field to a repository where retrieval, analysis, edits, aggregation, and further development are possible. Immediate findings and later results can be shared on the Web with local and global communities, and development of integrated service learning projects in concert with underserved communities is possible using this mode of information gathering and sharing. Mobile phone computing incorporates moments when participants build tomorrow\u27s skills while addressing today\u27s learning goals. Use of digital tools and supporting resources bring real world problems into focus. Mobile phone computing enables understanding of ‘real-time’ exploration and acquisition of “21st Century Skills.” To be effective in the 21st century, students must be able to exhibit a range of functional and critical thinking skills related to information, media and technology. The project, MOBILE PHONE COMPUTING FOR DEVELOPMENT of STUDENT 21ST CENTURY SKILLS, offers unique 21st Century Skills development through a combination of diverse and complementary classroom, field and experiential learning moments captured in ‘real-time.’ The mobile phone computing project uniquely enables and enhances acquisition of the 21st Century skills identified by Thinkfinity.org, Partnership for 21st Century Skills, and International Society for Technology in Education [4]. Through the use of such mobile tools and applications, students can, in fact, authentically work “from the field” to collect and share real-time data with each other, extend their learning to larger local and global communities, and develop integrated service learning projects with underserved populations

    Ca impurity in small mixed 4^4He-3^3He clusters

    Get PDF
    The structure of small mixed helium clusters doped with one calcium atom has been determined within the diffusion Monte Carlo framework. The results show that the calcium atom sits at the 4^4He-3^3He interface. This is in agreement with previous studies, both experimental and theoretical, performed for large clusters. A comparison between the results obtained for the largest cluster we have considered for each isotope shows a clear tendency of the Ca atom to reside in a deep dimple at the surface of the cluster for 4^4He clusters, and to become fully solvated for 3^3He clusters. We have calculated the absorption spectrum of Ca around the 4s4p4s24s4p \leftarrow 4s^2 transition and have found that it is blue-shifted from that of the free-atom transition by an amount that depends on the size and composition of the cluster.Comment: 24 pages, 11 figures. Accepted on Journal of Chemical Physic
    corecore