262 research outputs found

    Forecasting temporal dynamics of cutaneous leishmaniasis in Northeast Brazil.

    Get PDF
    IntroductionCutaneous leishmaniasis (CL) is a vector-borne disease of increasing importance in northeastern Brazil. It is known that sandflies, which spread the causative parasites, have weather-dependent population dynamics. Routinely-gathered weather data may be useful for anticipating disease risk and planning interventions.Methodology/principal findingsWe fit time series models using meteorological covariates to predict CL cases in a rural region of Bahía, Brazil from 1994 to 2004. We used the models to forecast CL cases for the period 2005 to 2008. Models accounting for meteorological predictors reduced mean squared error in one, two, and three month-ahead forecasts by up to 16% relative to forecasts from a null model accounting only for temporal autocorrelation.SignificanceThese outcomes suggest CL risk in northeastern Brazil might be partially dependent on weather. Responses to forecasted CL epidemics may include bolstering clinical capacity and disease surveillance in at-risk areas. Ecological mechanisms by which weather influences CL risk merit future research attention as public health intervention targets

    Effect of nickel and cobalt on methanogenic enrichment cultures and role of biogenic sulfide in metal toxicity attenuation

    Get PDF
    The Supplementary Material for this article can be found online at: http://journal.frontiersin.org/article/10.3389/fmicb. 2017.01341/full#supplementary-materialMetals play an important role in microbial metabolism by acting as cofactors for many enzymes. Supplementation of biological processes with metals may result in improved performance, but high metal concentrations are often toxic to microorganisms. In this work, methanogenic enrichment cultures growing on H2/CO2 or acetate were supplemented with trace concentrations of nickel (Ni) and cobalt (Co), but no significant increase in methane production was observed in most of the tested conditions. However, high concentrations of these metals were detrimental to methanogenic activity of the cultures. Cumulative methane production (after 6 days of incubation) from H2/CO2 was 40% lower in the presence of 8 mM of Ni or 30 mM of Co, compared to controls without metal supplementation. When acetate was used as substrate, cumulative methane production was also reduced: by 18% with 8 mM of Ni and by 53% with 30 mM of Co (after 6 days of incubation). Metal precipitation with sulphide was further tested as a possible method to alleviate metal toxicity. Anaerobic sludge was incubated with Co (30 mM) and Ni (8 mM) in the presence of sulphate or sulphide. The addition of sulphide helped to mitigate the toxic effect of the metals. Methane production from H2/CO2 was negatively affected in the presence of sulphate, possibly due to competition of hydrogenotrophic methanogens by sulphate-reducing bacteria. However, in the enrichment cultures growing on acetate, biogenically produced sulphide had a positive effect and more methane was produced in these incubations than in similar assays without sulphate addition. The outcome of competition between methanogens and sulphate-reducing bacteria is a determinant factor for the success of using biogenic sulphide as detoxification method.The research was financially supported by the People Program (Marie Curie Actions) of the European Union's Seventh Framework Programme FP7/2007-2013 under REA agreement 289193. Research of AS and DS is supported by a ERC grant (project 323009) of the European Union Seventh Framework Program FP7 and a Gravitation grant (project 024.002.002) of the Netherlands Ministry of Education, Culture and Science and the Netherlands Science Foundation (NWO).info:eu-repo/semantics/publishedVersio

    Aerosol and precipitation chemistry measurements in a remote site in Central Amazonia: the role of biogenic contribution

    Get PDF
    In this analysis a 3.5 years data set of aerosol and precipitation chemistry, obtained in a remote site in Central Amazonia (Balbina, (1A degrees 55' S, 59A degrees 29' W, 174 m a.s.l.), about 200 km north of Manaus) is discussed. Aerosols were sampled using stacked filter units (SFU), which separate fine (d < 2.5 mu m) and coarse mode (2.5 mu m < d < 10.0 mu m) aerosol particles. Filters were analyzed for particulate mass (PM), Equivalent Black Carbon (BCE) and elemental composition by Particle Induced X-Ray Emission (PIXE). Rainwater samples were collected using a wet-only sampler and samples were analyzed for pH and ionic composition, which was determined using ionic chromatography (IC). Natural sources dominated the aerosol mass during the wet season, when it was predominantly of natural biogenic origin mostly in the coarse mode, which comprised up to 81% of PM10. Biogenic aerosol from both primary emissions and secondary organic aerosol dominates the fine mode in the wet season, with very low concentrations (average 2.2 mu g m(-3)). Soil dust was responsible for a minor fraction of the aerosol mass (less than 17%). Sudden increases in the concentration of elements as Al, Ti and Fe were also observed, both in fine and coarse mode (mostly during the April-may months), which we attribute to episodes of Saharan dust transport. During the dry periods, a significant contribution to the fine aerosols loading was observed, due to the large-scale transport of smoke from biomass burning in other portions of the Amazon basin. This contribution is associated with the enhancement of the concentration of S, K, Zn and BCE. Chlorine, which is commonly associated to sea salt and also to biomass burning emissions, presented higher concentration not only during the dry season but also for the April-June months, due to the establishment of more favorable meteorological conditions to the transport of Atlantic air masses to Central Amazonia. The chemical composition of rainwater was similar to those ones observed in other remote sites in tropical forests. The volume-weighted mean (VWM) pH was 4.90. The most important contribution to acidity was from weak organic acids. The organic acidity was predominantly associated with the presence of acetic acid instead of formic acid, which is more often observed in pristine tropical areas. Wet deposition rates for major species did not differ significantly between dry and wet season, except for NH4+, citrate and acetate, which had smaller deposition rates during dry season. While biomass burning emissions were clearly identified in the aerosol component, it did not present a clear signature in rainwater. The biogenic component and the long-range transport of sea salt were observed both in aerosols and rainwater composition. The results shown here indicate that in Central Amazonia it is still possible to observe quite pristine atmospheric conditions, relatively free of anthropogenic influences.FAPESPFAPESPCNPqCNP

    Condutividade elétrica da solução nutritiva e produção de alface em hidroponia

    Get PDF
    A variação da condutividade elétrica da solução nutritiva altera a absorção de água e nutrientes pelas plantas, interferindo no metabolismo e, consequentemente, na produção das mesmas. Este trabalho, conduzido no período de agosto a outubro de 1999, avaliou o efeito da condutividade elétrica (CE) sobre a produção e desenvolvimento de alface americana de cabeça crespa, cultivar Ryder em hidroponia. As tendências de variação da condutividade elétrica do meio nutritivo, durante o desenvolvimento da alface, foram também avaliadas. Foi utilizado o delineamento inteiramente casualizado com seis repetições e três tratamentos, constituídos pelas condutividade elétricas: CE1= 1,46, CE2= 2,46 e CE3= 4,21 (± 0,24) mS cm-1. O diâmetro e altura da cabeça e peso seco da raiz não foram influenciados pelas condutividades elétricas da solução nutritiva. Os maiores pesos do material fresco e seco foram conseguidos com CE 2,46 (± 0,24) mS cm-1. Todos os tratamentos apresentaram a tendência de diminuição da condutividade elétrica, durante o cultivo da alface verificando-se que a condutividade elétrica teve influência sobre as características de produção da alface americana.The levels of electrical conductivity (EC) can alter water and nutrient uptake by plants, influencing their metabolism and yield. This experiment was carried out to verify the effects of EC on the yield and the development of the crisp head lettuce cv. Ryder in hidroponics. The tendency of the electrical conductivity changes of the nutrient solution during the development of the lettuce was also evaluated. A completely randomized design was used, with six replications and three treataments: EC1= 1.46, EC2= 2.46 and EC3= 4.21 (± 0.24) mS cm-1. Lettuce head diameter and height, and root dry weight were not influenced by EC. The largest fresh and dry weights of heads were obtained for 2.46 (± 0.24) mS cm-1. All treatments had the same tendency of reducing EC during lettuce growth

    Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth

    Get PDF
    A systems approach using 13C metabolic flux analysis (MFA), non-targeted tracer fate detection (NTFD), and transcriptional profiling was applied to investigate the role of oncogenic K-Ras in metabolic transformation.K-Ras transformed cells exhibit an increased glycolytic rate and lower flux through the oxidative tricarboxylic acid (TCA) cycle.K-Ras transformed cells show a relative increase in glutamine anaplerosis and reductive TCA metabolism.Transcriptional changes driven by oncogenic K-Ras suggest control nodes associated with the metabolic reprogramming of cancer cells

    Economic Losses From COVID-19 Cases in the Philippines: A Dynamic Model of Health and Economic Policy Trade-Offs

    Get PDF
    The COVID-19 pandemic forced governments globally to impose lockdown measures and mobility restrictions to curb the transmission of the virus. As economies slowly reopen, governments face a trade-off between implementing economic recovery and health policy measures to control the spread of the virus and to ensure it will not overwhelm the health system. We developed a mathematical model that measures the economic losses due to the spread of the disease and due to different lockdown policies. This is done by extending the subnational SEIR model to include two differential equations that capture economic losses due to COVID-19 infection and due to the lockdown measures imposed by the Philippine government. We then proceed to assess the trade-off policy space between health and economic measures faced by the Philippine government. The study simulates the cumulative economic losses for 3 months in 8 scenarios across 5 regions in the country, including the National Capital Region (NCR), to capture the trade-off mechanism. These scenarios present the various combinations of either retaining or easing lockdown policies in these regions. Per region, the trade-off policy space was assessed through minimising the 3-month cumulative economic losses subject to the constraint that the average health-care utilisation rate (HCUR) consistently falls below 70%, which is the threshold set by the government before declaring that the health system capacity is at high risk. The study finds that in NCR, a policy trade-off exists where the minimum cumulative economic losses comprise 10.66% of its Gross Regional Domestic Product. Meanwhile, for regions that are non-adjacent to NCR, a policy that hinges on trade-off analysis does not apply. Nevertheless, for all simulated regions, it is recommended to improve and expand the capacity of the health system to broaden the policy space for the government in easing lockdown measures

    Mutations related to Antiretroviral Resistance identified by ultra-deep sequencing in HIV-1 infected children under Structured Interruptions of HAART

    Get PDF
    Altres ajuts: CONACYT/GCPS/44519Although Structured Treatment Interruptions (STI) are currently not considered an alternative strategy for antiretroviral treatment, their true benefits and limitations have not been fully established. Some studies suggest the possibility of improving the quality of life of patients with this strategy; however, the information that has been obtained corresponds mostly to studies conducted in adults, with a lack of knowledge about its impact on children. Furthermore, mutations associated with antiretroviral resistance could be selected due to sub-therapeutic levels of HAART at each interruption period. Genotyping methods to determine the resistance profiles of the infecting viruses have become increasingly important for the management of patients under STI, thus low-abundance antiretroviral drug-resistant mutations (DRM's) at levels under limit of detection of conventional genotyping (<20% of quasispecies) could increase the risk of virologic failure. In this work, we analyzed the protease and reverse transcriptase regions of the pol gene by ultra-deep sequencing in pediatric patients under STI with the aim of determining the presence of high- and low-abundance DRM's in the viral rebounds generated by the STI. High-abundance mutations in protease and high- and low-abundance mutations in reverse transcriptase were detected but no one of these are directly associated with resistance to antiretroviral drugs. The results could suggest that the evaluated STI program is virologically safe, but strict and carefully planned studies, with greater numbers of patients and interruption/restart cycles, are still needed to evaluate the selection of DRM's during STI

    The Newly Synthesized Pyrazole Derivative 5-(1-(3 Fluorophenyl)-1H-Pyrazol-4-yl)-2H-Tetrazole Reduces Blood Pressure of Spontaneously Hypertensive Rats via NO/cGMO Pathway

    Get PDF
    The search for new antihypertensive drugs has grown in recent years because of high rate of morbidity among hypertensive patients and several side effects that are associated with the first-line medications. The current study sought to investigate the antihypertensive effect of a newly synthesized pyrazole derivative known as 5-(1-(3 fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM-21). Spontaneously hypertensive rats (SHR) were used to evaluate the effect of LQFM-21 on mean arterial pressure (MAP), heart rate (HR), renal vascular conductance (RVC), arterial vascular conductance (AVC), baroreflex sensitivity (BRS) index, and vascular reactivity. Acute intravenous (iv) administration of LQFM-21 (0.05, 0.1, 0.2, and 0.4 mg kg-1) reduced MAP and HR, and increased RVC and AVC. Chronic oral administration of LQFM-21 (15 mg kg-1) for 15 days reduced MAP without altering BRS. The blockade of muscarinic receptors and nitric oxide synthase by intravenous infusion of atropine and L-NAME, respectively, attenuated cardiovascular effects of LQFM-21. In addition, ex vivo experiments showed that LQFM-21 induced an endothelium-dependent relaxation in isolated aortic rings from SHR. This effect was blocked by guanylyl cyclase inhibitor (ODQ) and L-NAME. These findings suggest the involvement of muscarinic receptor and NO/cGMP pathway in the antihypertensive and vasodilator effects of LQFM-21
    corecore