49 research outputs found

    Agrobacterium tumefaciens gene transfer to Casuarina glauca : a tropical nitrogen-fixing tree

    Get PDF
    Transgenic calli of the tropical tree #Casuarina glauca were produced using #Agrobacterium tumefaciens-mediated gene transfer. Hypocotyls, cotyledons and epicotyls were excised from 30-60-day old #Casuarina seedlings and cocultivated with #Agrobacterium strain C58C1(pGV2260) containing the binary vector BIN19GUSINT. Transformed calli were selected on nutrient medium supplemented with 0,5 microM NAA, 2,5 microM BA and 50 mg/l kanamycin. Some of the factors influencing T-DNA transfer to #C. glauca$ explants were studied. Optimal transformation rates were obtained when explants from 45-day old seedlings were cocultivated for 3 days in the presence of 25 microM acetosyringone. Transgenic buds differentiated on 10% of the calli grown on transformed epicotyls. Evidence for genetic transformation was obtained by beta-glucuronidase assay, PCR and Southern hybridization. (Résumé d'auteur

    Genome analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    Get PDF
    Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared t

    Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.The Sclerotinia sclerotiorum genome project was supported by the USDA Cooperative State Research, Education and Extension Service (USDA-NRI 2004). Sclerotinia sclerotiorum ESTs were funded by a grant to JA Rollins from USDA specific cooperative agreement 58-5442-4-281. The genome sequence of Botrytis cinerea strain T4 was funded by Genoscope, CEA, France. M Viaud was funded by the “Projet INRA Jeune-Equipe”. PM Coutinho and B Henrissat were funded by the ANR to project E-Tricel (grant ANR-07-BIOE-006). The CAZy database is funded in part by GIS-IBiSA. DM Soanes and NJ Talbot were partly funded by the UK Biotechnology and Biological Sciences Research Council. KM Plummer was partially funded by the New Zealand Bio-Protection Research Centre, http://bioprotection.org.nz/. BJ Howlett and A Sexton were partially funded by the Australian Grains Research and Development Corporation, www.grdc.com.au. L Kohn was partially funded by NSERC Discovery Grant (Natural Sciences and Engineering Research Council of Canada) - Grant number 458078. M Dickman was supported by the NSF grant MCB-092391 and BARD grant US-4041-07C. O Yarden was supported by BARD grant US-4041-07C. EG Danchin obtained financial support from the European Commission (STREP FungWall grant, contract: LSHB - CT- 2004 - 511952). A Botrytis Genome Workshop (Kaiserslautern, Germany) was supported by a grant from the German Science Foundation (DFG; HA1486) to M Hahn

    Genomic Analysis of the Necrotrophic Fungal Pathogens Sclerotinia sclerotiorum and Botrytis cinerea

    Get PDF
    Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38–39 Mb genomes include 11,860–14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to <1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea–specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops

    Demand-Driven Control of Root ATP Sulfurylase Activity and SO42- Uptake in Intact Canola (The Role of Phloem-Translocated Glutathione).

    No full text
    The activity of ATP sulfurylase extracted from roots of intact canola (Brassica napus L. cv Drakkar) increased after withdrawal of the S source from the nutrient solution and declined after refeeding SO42- to S-starved plants. The rate of SO42- uptake by the roots was similarly influenced. Identical responses were obtained in SO42- -fed roots when one-half of the root system was starved for S. The internal levels of SO42- and glutathione (GSH) declined after S starvation of the whole root system, but only GSH concentration declined in +S roots of plants from split root experiments. The concentration of GSH in phloem exudates decreased upon transfer of plants to S-free solution. Supplying GSH or cysteine to roots, either exogenously or internally via phloem sap, inhibited both ATP sulfurylase activity and SO42- uptake. Buthionine sulfoximine, an inhibitor of GSH synthesis, reversed the inhibitory effect of cysteine on ATP sulfurylase. It is hypothesized that GSH is responsible for mediating the responses to S availability. ATP sulfurylase activity and the SO42- uptake rate are regulated by similar demand-driven processes that involve the translocation of a phloem-transported message (possibly GSH) to the roots that provides information concerning the nutritional status of the leaves
    corecore