4,264 research outputs found

    Gas/liquid flow behaviours in a downward section of large diameter vertical serpentine pipes

    Get PDF
    An experimental study on air/water flow behaviours in a 101.6 mm i.d. vertical pipe with a serpentine configuration is presented. The experiments are conducted for superficial gas and liquid velocities ranging from 0.15 to 30 m/s and 0.07 to 1.5 m/s, respectively. The bend effects on the flow behaviours are significantly reduced when the flow reaches an axial distance of 30 pipe diameters or more from the upstream bend. The mean film thickness data from this study has been used to compare with the predicted data using several falling film correlations and theoretical models. It was observed that the large pipe data exhibits different tendencies and this manifests in the difference in slope when the dimensionless film thickness is plotted as a power law function of the liquid film Reynolds number

    Interfacial shear in adiabatic downward gas/liquid co-current annular flow in pipes

    Get PDF
    Interfacial friction is one of the key variables for predicting annular two-phase flow behaviours in vertical pipes. In order to develop an improved correlation for interfacial friction factor in downward co-current annular flow, the pressure gradient, film thickness and film velocity data were generated from experiments carried out on Cranfield University’s Serpent Rig, an air/water two-phase vertical flow loop of 101.6 mm internal diameter. The air and water superficial velocity ranges used are 1.42–28.87 and 0.1–1.0 m/s respectively. These correspond to Reynolds number values of 8400–187,000 and 11,000–113,000 respectively. The correlation takes into account the effect of pipe diameter by using the interfacial shear data together with dimensionless liquid film thicknesses related to different pipe sizes ranging from 10 to 101.6 mm, including those from published sources by numerous investigators. It is shown that the predictions of this new correlation outperform those from previously reported studies

    Sustainable Irrigation Management of Ornamental Cordyline Fruticosa “Red Edge” Plants with Saline Water

    Get PDF
    The aim of this work was to analyze the influence of the salinity of the nutrient solution on the transpiration and growth of Cordyline fruticosa var. “Red Edge” plants. A specific irrigation management model was calibrated with the experimental data. An experiment was performed with four treatments. These treatments consisted of the application of four nutrient solutions with different electrical conductivity (ECw) levels ranging from 1.5 dS m−1 (control treatment) to 4.5 dS m−1. The results showed that day-time transpiration decreases when salt concentration in the nutrient solution increases. The transpiration of the plant in the control treatment was modelled by applying a combination method while the effect of the salinity of the nutrient solution was modelled by deriving a saline stress coefficient from the experimental data. The results showed that significant reductions in plant transpiration were observed for increasing values of ECw. The crop development and yield were also affected by the increasing salinity of the nutrient solution. A relationship between the ECw and the relative crop yield was derived

    Mid-infrared photodetectors operating over an extended wavelength range up to 90 K

    Get PDF
    We report a wavelength threshold extension, from the designed value of 3.1 to 8.9 μm, in a -type heterostructure photodetector. This is associated with the use of a graded barrier and barrier offset, and arises from hole–hole interactions in the detector absorber. Experiments show that using long-pass filters to tune the energies of incident photons gives rise to changes in the intensity of the response. This demonstrates an alternative approach to achieving tuning of the photodetector response without the need to adjust the characteristic energy that is determined by the band structure

    Accurate molecular polarizabilities with coupled-cluster theory and machine learning

    Full text link
    The molecular polarizability describes the tendency of a molecule to deform or polarize in response to an applied electric field. As such, this quantity governs key intra- and inter-molecular interactions such as induction and dispersion, plays a key role in determining the spectroscopic signatures of molecules, and is an essential ingredient in polarizable force fields and other empirical models for collective interactions. Compared to other ground-state properties, an accurate and reliable prediction of the molecular polarizability is considerably more difficult as this response quantity is quite sensitive to the description of the underlying molecular electronic structure. In this work, we present state-of-the-art quantum mechanical calculations of the static dipole polarizability tensors of 7,211 small organic molecules computed using linear-response coupled-cluster singles and doubles theory (LR-CCSD). Using a symmetry-adapted machine-learning based approach, we demonstrate that it is possible to predict the molecular polarizability with LR-CCSD accuracy at a negligible computational cost. The employed model is quite robust and transferable, yielding molecular polarizabilities for a diverse set of 52 larger molecules (which includes challenging conjugated systems, carbohydrates, small drugs, amino acids, nucleobases, and hydrocarbon isomers) at an accuracy that exceeds that of hybrid density functional theory (DFT). The atom-centered decomposition implicit in our machine-learning approach offers some insight into the shortcomings of DFT in the prediction of this fundamental quantity of interest

    Beyond the Classroom: Using Google Sites as a Supplementary Material to Improve the Learners’ English Academic Performance

    Get PDF
    The present study investigated the common challenges of learners in the new mode of learning and their frequency, if there would be a significant difference in the performance of the participants after using Google Sites, the acceptability of the Google Sites in terms of its content quality, instructional quality, and technical quality, and the experience of the respondents in using Beyond the Classroom as supplementary material for the Third Quarter. This action research used the survey questionnaires, evaluation tool, pre-tests, and posttest as instruments in answering the research questions. Respondents were 15 Grade 8 High School learners who have internet access. Results indicated always and sometimes characterized their experience on challenges such as understanding the lessons after reading the discussion found in the modules and that there is a significant difference between the pre-test and post-test scores for lessons that are easy for them to understand and learn alone. Results also revealed that Beyond the Classroom is very acceptable in terms of its content, instructional, and technical quality, and respondents found it helpful in understanding their lessons. Finally, this study showed that learners struggle to cope with the changes in the new normal, and online supplementary material helps them understand their lessons and activities for the Third Quarter of the academic year 2021-2022
    corecore