39 research outputs found

    Effect of betaine supplementation on plasma nitrate/nitrite in exercise-trained men

    Get PDF
    Background: Betaine, beetroot juice, and supplemental nitrate have recently been reported to improve certain aspects of exercise performance, which may be mechanistically linked to increased nitric oxide. The purpose of the present study was to investigate the effect of betaine supplementation on plasma nitrate/nitrite, a surrogate marker or nitric oxide, in exercise-trained men.Methods: We used three different study designs (acute intake of betaine at 1.25 and 5.00 grams, chronic intake of betaine at 2.5 grams per day for 14 days, and chronic [6 grams of betaine per day for 7 days] followed by acute intake [6 grams]), all involving exercise-trained men, to investigate the effects of orally ingested betaine on plasma nitrate/nitrite. Blood samples were collected before and at 30, 60, 90, and 120 min after ingestion of 1.25 and 5.00 grams of betaine (Study 1); before and after 14 days of betaine supplementation at a dosage of 2.5 grams (Study 2); and before and after 7 days of betaine supplementation at a dosage of 6 grams, followed by acute ingestion of 6 grams and blood measures at 30 and 60 min post ingestion (Study 3).Results: In Study 1, nitrate/nitrite was relatively unaffected and no statistically significant interaction (p = 0.99), dosage (p = 0.69), or time (p = 0.91) effects were noted. Similar findings were noted in Study 2, with no statistically significant interaction (p = 0.57), condition (p = 0.98), or pre/post intervention (p = 0.17) effects noted for nitrate/nitrite. In Study 3, no statistically significant changes were noted in nitrate/nitrite between collection times (p = 0.97).Conclusion: Our data indicate that acute or chronic ingestion of betaine by healthy, exercise-trained men does not impact plasma nitrate/nitrite. These findings suggest that other mechanisms aside from increasing circulating nitric oxide are likely responsible for any performance enhancing effect of betaine supplementation. © 2011 Bloomer et al; licensee BioMed Central Ltd

    New Zealand Blackcurrant Extract Improves Cycling Performance and Fat Oxidation in Cyclists

    Get PDF
    PURPOSE: Blackcurrant intake increases peripheral blood flow in humans, potentially by anthocyanin-induced vasodilation which may affect substrate delivery and exercise performance. We examined the effects of New Zealand blackcurrant (NZBC) extract on substrate oxidation, cycling time-trial performance and plasma lactate responses following the time-trial in trained cyclists. METHODS: Using a randomized, double-blind, crossover design, fourteen healthy men (age: 38 ± 13 years, height: 178 ± 4 cm, body mass: 77 ± 9 kg, V?O2max: 53 ± 6 ml·kg-1·min-1, mean ± SD) ingested NZBC extract (300 mg?day-1 CurraNZ™ containing 105 mg anthocyanin) or placebo (PL, 300 mg microcrystalline cellulose M102) for 7-days (washout 14-days). On day 7, participants performed 30 min of cycling (3x10 min at 45, 55 and 65% V?O2max), followed by a 16.1 km time-trial with lactate sampling during a 20-minute passive recovery. RESULTS: NZBC extract increased fat oxidation at 65% V?O2max by 27% (P < 0.05) and improved 16.1 km time-trial performance by 2.4% (NZBC: 1678 ± 108 s, PL: 1722 ± 131 s, P < 0.05). Plasma lactate was higher with NZBC extract immediately following the time-trial (NZBC: 7.06 ± 1.73 mmol?L-1, PL: 5.92 ± 1.58 mmol?L-1 P < 0.01). CONCLUSIONS: Seven days intake of New Zealand blackcurrant extract improves 16.1 km cycling time-trial performance and increases fat oxidation during moderate intensity cycling

    Beetroot supplementation improves the physiological responses to incline walking

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00421-018-3843-xPurpose: We investigated the effects of an acute 24-h nitrate-rich beetroot juice supplement (BR) on the energy cost, exercise efficiency and blood pressure responses to intermittent walking at different gradients. Methods: In a double-blind, cross-over design, eight participants were provided with a total of 350 ml of nitrate-rich (~20.5 mmol nitrate) BR or placebo (PLA) across 24-h before completing intermittent walking at 3 km/h on treadmill at gradients of 1%, 5%, 10%, 15% and 20%. Results: Resting mean arterial pressure (MAP) was ~4.1% lower after BR (93 vs. 89 mmHg; P = 0.001), as well as during exercise (102 vs. 99 mmHg; P = 0.011) and recovery (97 vs. 94 mmHg; P = 0.001). Exercising (1227 vs. 1129 ml/min P < 0.001) and end-stage (1404 vs. 1249 ml/min; P = 0.002) oxygen uptake (O2) was lower in BR compared to PLA, which was accompanied by an average reduction in phase II ̇O2 amplitude (1067 vs. 940 ml/min; P = 0.025). Similarly, recovery O2 (509 vs. 458 ml/min; P = 0.001) was lower in BR. Whole-blood potassium concentration increased from pre-post exercise in PLA (4.1 ± 0.3 vs. 4.5 ± 0.3 mmol/L; P = 0.013) but not BR (4.1 ± 0.31 vs. 4.3 ± 0.2 mmol/L; P = 0.188). Conclusions: Energy cost of exercise, recovery of O2, MAP and blood markers were ameliorated after BR. Previously reported mechanisms explain these findings, which are more noticeable during less efficient walking at steep gradients (15-20%). These findings have practical implications for hill-walkers

    ‘‘Beet-ing’’ the Mountain: A Review of the Physiological and Performance Effects of Dietary Nitrate Supplementation at Simulated and Terrestrial Altitude

    Get PDF
    Exposure to altitude results in multiple physiological consequences. These include, but are not limited to, a reduced maximal oxygen consumption, drop in arterial oxygen saturation, and increase in muscle metabolic perturbations at a fixed sub-maximal work rate. Exercise capacity during fixed work rate or incremental exercise and time-trial performance are also impaired at altitude relative to sea-level. Recently, dietary nitrate (NO3-) supplementation has attracted considerable interest as a nutritional aid during altitude exposure. In this review, we summarise and critically evaluate the physiological and performance effects of dietary NO3- supplementation during exposure to simulated and terrestrial altitude. Previous investigations at simulated altitude indicate that NO3- supplementation may reduce the oxygen cost of exercise, elevate arterial and tissue oxygen saturation, improve muscle metabolic function, and enhance exercise capacity/ performance. Conversely, current evidence suggests that NO3- supplementation does not augment the training response at simulated altitude. Few studies have evaluated the effects of NO3- at terrestrial altitude. Current evidence indicates potential improvements in endothelial function at terrestrial altitude following NO3- supplementation. No effects of NO3- supplementation have been observed on oxygen consumption or arterial oxygen saturation at terrestrial altitude, although further research is warranted. Limitations of the present body of literature are discussed, and directions for future research are provided

    Cocoa-flavanols enhance moderate-intensity pulmonary [Formula: see text] kinetics but not exercise tolerance in sedentary middle-aged adults.

    Get PDF
    INTRODUCTION: Cocoa flavanols (CF) may exert health benefits through their potent vasodilatory effects, which are perpetuated by elevations in nitric oxide (NO) bioavailability. These vasodilatory effects may contribute to improved delivery of blood and oxygen (O2) to exercising muscle. PURPOSE: Therefore, the objective of this study was to examine how CF supplementation impacts pulmonary O2 uptake ([Formula: see text]) kinetics and exercise tolerance in sedentary middle-aged adults. METHODS: We employed a double-blind cross-over, placebo-controlled design whereby 17 participants (11 male, 6 female; mean ± SD, 45 ± 6 years) randomly received either 7 days of daily CF (400 mg) or placebo (PL) supplementation. On day 7, participants completed a series of 'step' moderate- and severe-intensity exercise tests for the determination of [Formula: see text] kinetics. RESULTS: During moderate-intensity exercise, the time constant of the phase II [Formula: see text] kinetics ([Formula: see text]) was decreased by 15% in CF as compared to PL (mean ± SD; PL 40 ± 12 s vs. CF 34 ± 9 s, P = 0.019), with no differences in the amplitude of [Formula: see text] (A[Formula: see text]; PL 0.77 ± 0.32 l min-1 vs. CF 0.79 ± 0.34 l min-1, P = 0.263). However, during severe-intensity exercise, [Formula: see text], the amplitude of the slow component ([Formula: see text]) and exercise tolerance (PL 435 ± 58 s vs. CF 424 ± 47 s, P = 0.480) were unchanged between conditions. CONCLUSION: Our data show that acute CF supplementation enhanced [Formula: see text] kinetics during moderate-, but not severe-intensity exercise in middle-aged participants. These novel effects of CFs, in this demographic, may contribute to improved tolerance of moderate-activity physical activities, which appear commonly present in daily life. TRIAL REGISTRATION: Registered under ClinicalTrials.gov Identifier no. NCT04370353, 30/04/20 retrospectively registered

    Influence of dietary nitrate supplementation on local sweating and cutaneous vascular responses during exercise in a hot environment.

    Get PDF
    Purpose We investigated the influence of inorganic nitrate (NO−3) supplementation on local sweating and cutaneous vascular responses during exercise in hot conditions. Method Eight healthy, young subjects were assigned in a randomized, double-blind, crossover design to receive NO−3 -rich beetroot (BR) juice (140 mL/day, containing ~8 mmol of NO−3) and NO−3-depleted placebo (PL) juice (140 mL/day, containing ~0.003 mmol of NO−3) for 3 days. On day 3 of supplementation, subjects cycled at an intensity corresponding to 55% of V̇ O2max for 30 min in hot conditions (30 °C, 50% relative humidity). Chest and forearm sweat rate (SR) and skin blood flow (SkBF), were measured continuously. Cutaneous vascular conductance (CVC) was calculated by SkBF/mean arterial pressure (MAP). Results Prior to exercise, plasma NO− 3 (21±6 and 581±161 µM) and nitrite (NO− 2 , 87±28 and 336±156 nM) concentrations were higher after BR compared to PL supplementation (P≤0.011, n=6). Oesophageal, mean skin, and mean body temperatures during exercise were not different between conditions. In addition, BR supplementation did not affect SR, SkBF, and CVC during exercise. A lower MAP was found after 30 min of exercise following BR supplementation (112±6 and 103±6 mmHg for PL and BR, respectively, P=0.021). Conclusion These results suggest that inorganic NO− 3 supplementation, which increases the potential for O2-independent NO production, does not affect local sweating and cutaneous vascular responses, but attenuates blood pressure in young healthy subjects exercising in a hot environment

    Goal formulation and tracking in child mental health settings: when is it more likely and is it associated with satisfaction with care?

    Get PDF
    Goal formulation and tracking may support preference-based care. Little is known about the likelihood of goal formulation and tracking and associations with care satisfaction. Logistic and Poisson stepwise regressions were performed on clinical data for N = 3757 children from 32 services in the UK (M age = 11; SDage = 3.75; most common clinician-reported presenting problem was emotional problems = 55.6%). Regarding the likelihood of goal formulation, it was more likely for pre-schoolers, those with learning difficulties or those with both hyperactivity disorder and conduct disorder. Regarding the association between goal formulation and tracking and satisfaction with care, parents of children with goals information were more likely to report complete satisfaction by scoring at the maximum of the scale. Findings of the present research suggest that goal formulation and tracking may be an important part of patient satisfaction with care. Clinicians should be encouraged to consider goal formulation and tracking when it is clinically meaningful as a means of promoting collaborative practice
    corecore