381 research outputs found

    Review of the National Packaging Covenant

    Full text link
    The NSW Nature Conservation Council, with funding from the NSW Department of Environment and Conservation, commissioned the Institute for Sustainable Futures at the University of Technology, Sydney, to carry out an independent review of the National Packaging Covenant and the National Environmental Protection Measure for Used Packaging Materials (the Covenant systema), in December 2003. This review was intended to evaluate the Covenant system's effectiveness in achieving both its stated objectives and broader environmental and social outcomes, including reduction in generation of packaging waste, specifically reduction in virgin materials used in packaging and a reduction in packaging material disposed to landfill. The National Packaging Covenant (NPC) is a voluntary agreement between industry, the Commonwealth Government, most State Governments and some local governments, to reduce packaging waste. It is supported by a regulatory measure, the National Environmental Protection Measure (NEPM), designed to encourage brand owners to sign the NPC. The NPC came into effect in August 1999 and is due to finish in July 2004. It is currently the subject of three separate reviews, including this one. The principle of a cooperative regulatory framework supported by a regulatory safety net is an appealing one, so there is a strong desire on the part of industry and some government agencies to provide the maximum possible opportunity for the NPC to demonstrate that it has provided benefits. This review has determined that the Covenant system is not an effective instrument for reducing the generation of packaging waste and therefore an alternative policy framework will be needed to achieve this goal. The evaluation is briefly summarised for each of the criteria

    Sustainable Affordable Housing - Submission to Inquiry into First Home Ownership

    Full text link
    The Institute welcomes this opportunity to submit comments to the Commissions Inquiry evaluating the affordability and availability of housing for first home buyers. The Institute for Sustainable Futures is a self-funded research and consulting institute of the University of Technology, Sydney. The Institutes mission is to support and create change towards sustainable futures by working with government, industry and the community. Social sustainability, sustainable housing and sustainable urban infrastructure for energy, water and transport are all key parts of this mission.1 This submission seeks to evaluate the affordability and availability of housing for first home buyers within the framework of ecologically sustainable development (ESD). It is in two parts. Part I: Submission provides the framework. Part II: Comments on the Commissions Issues Paper provides more details on this framework under the broad headings used in the Commissions Issues Paper

    Heavy X-ray obscuration in the most-luminous galaxies discovered by WISE

    Get PDF
    Hot Dust-Obscured Galaxies (Hot DOGs) are hyperluminous (L8−1000 μm>1013 L⊙L_{\mathrm{8-1000\,\mu m}}>10^{13}\,\mathrm{L_\odot}) infrared galaxies with extremely high (up to hundreds of K) dust temperatures. The sources powering both their extremely high luminosities and dust temperatures are thought to be deeply buried and rapidly accreting supermassive black holes (SMBHs). Hot DOGs could therefore represent a key evolutionary phase in which the SMBH growth peaks. X-ray observations can be used to study their obscuration levels and luminosities. In this work, we present the X-ray properties of the 20 most-luminous (Lbol≳1014 L⊙L_{\mathrm{bol}}\gtrsim10^{14}\, L_\odot) known Hot DOGs at z=2−4.6z=2-4.6. Five of them are covered by long-exposure (10−7010-70 ks) Chandra and XMM-Newton observations, with three being X-ray detected, and we study their individual properties. One of these sources (W0116−-0505) is a Compton-thick candidate, with column density NH=(1.0−1.5)×1024 cm−2N_H=(1.0-1.5)\times10^{24}\,\mathrm{cm^{-2}} derived from X-ray spectral fitting. The remaining 15 Hot DOGs have been targeted by a Chandra snapshot (3.1 ks) survey. None of these 15 is individually detected; therefore we applied a stacking analysis to investigate their average emission. From hardness-ratio analysis, we constrained the average obscuring column density and intrinsic luminosity to be logNH [cm−2]>23.5N_H\,\mathrm{[cm^{-2}]}>23.5 and LX≳1044 erg cm−2 s−1L_X\gtrsim10^{44}\,\mathrm{erg\,cm^{-2}\,s^{-1}}, which are consistent with results for individually detected sources. We also investigated the LX−L6μmL_X-L_{6\mu\mathrm{m}} and LX−LbolL_X-L_{bol} relations, finding hints that Hot DOGs are typically X-ray weaker than expected, although larger samples of luminous obscured QSOs are needed to derive solid conclusions.Comment: MNRAS, accepted 2017 November 29 . Received 2017 November 29 ; in original form 2017 October 11. 15 pages, 6 figure

    Explorations in anatomy: the remains from Royal London Hospital

    Get PDF
    This paper considers the faunal remains from recent excavations at the Royal London Hospital. The remains date to the beginning of the 19th century and offer an insight into the life of the hospital's patients and practices of the attached medical school. Many of the animal remains consist of partially dissected skeletons, including the unique finds of Hermann's tortoise (Testudo hermanni) and Cercopithecus monkey. The hospital diet and developments in comparative anatomy are discussed by integrating the results with documentary research. They show that zooarchaeological study of later post-medieval material can significantly enhance our understanding of the exploitation of animals in this perio

    Resolving the cosmic X-ray background with a next-generation high-energy X-ray observatory

    Get PDF
    The cosmic X-ray background (CXB), which peaks at an energy of ~30 keV, is produced primarily by emission from accreting supermassive black holes (SMBHs). The CXB therefore serves as a constraint on the integrated SMBH growth in the Universe and the accretion physics and obscuration in active galactic nuclei (AGNs). This paper gives an overview of recent progress in understanding the high-energy (>~10 keV) X-ray emission from AGNs and the synthesis of the CXB, with an emphasis on results from NASA's NuSTAR hard X-ray mission. We then discuss remaining challenges and open questions regarding the nature of AGN obscuration and AGN physics. Finally, we highlight the exciting opportunities for a next-generation, high-resolution hard X-ray mission to achieve the long-standing goal of resolving and characterizing the vast majority of the accreting SMBHs that produce the CXB.Comment: Science White paper submitted to Astro2020 Decadal Survey; 5 pages, 3 figures, plus references and cover pag

    The AllWISE Motion Survey, Part 2

    Get PDF
    We use the AllWISE Data Release to continue our search for WISE-detected motions. In this paper, we publish another 27,846 motion objects, bringing the total number to 48,000 when objects found during our original AllWISE motion survey are included. We use this list, along with the lists of confirmed WISE-based motion objects from the recent papers by Luhman and by Schneider et al. and candidate motion objects from the recent paper by Gagne et al. to search for widely separated, common-proper-motion systems. We identify 1,039 such candidate systems. All 48,000 objects are further analyzed using color-color and color-mag plots to provide possible characterizations prior to spectroscopic follow-up. We present spectra of 172 of these, supplemented with new spectra of 23 comparison objects from the literature, and provide classifications and physical interpretations of interesting sources. Highlights include: (1) the identification of three G/K dwarfs that can be used as standard candles to study clumpiness and grain size in nearby molecular clouds because these objects are currently moving behind the clouds, (2) the confirmation/discovery of several M, L, and T dwarfs and one white dwarf whose spectrophotometric distance estimates place them 5-20 pc from the Sun, (3) the suggestion that the Na 'D' line be used as a diagnostic tool for interpreting and classifying metal-poor late-M and L dwarfs, (4) the recognition of a triple system including a carbon dwarf and late-M subdwarf, for which model fits of the late-M subdwarf (giving [Fe/H] ~ -1.0) provide a measured metallicity for the carbon star, and (5) a possible 24-pc-distant K5 dwarf + peculiar red L5 system with an apparent physical separation of 0.1 pc.Comment: 62 pages with 80 figures, accepted for publication in The Astrophysical Journal Supplement Series, 23 Mar 2016; second version fixes a few small typos and corrects the footnotes for Table

    The NuSTAR Extragalactic Survey: First Direct Measurements of the Greater Than Or Similar To 10 Kev X-Ray Luminosity Function For Active Galactic Nuclei At z \u3e 0.1

    Get PDF
    We present the first direct measurements of the rest-frame 10–40 keV X-ray luminosity function (XLF) of active galactic nuclei (AGNs) based on a sample of 94 sources at 0.1 \u3c z \u3c 3, selected at 8–24 keV energies from sources in the Nuclear Spectroscopic Telescope Array (NuSTAR) extragalactic survey program. Our results are consistent with the strong evolution of the AGN population seen in prior, lower-energy studies of the XLF. However, different models of the intrinsic distribution of absorption, which are used to correct for selection biases, give significantly different predictions for the total number of sources in our sample, leading to small, systematic differences in our binned estimates of the XLF. Adopting a model with a lower intrinsic fraction of Compton-thick sources and a larger population of sources with column densities cm−2 or a model with stronger Compton reflection component (with a relative normalization of R ~ 2 at all luminosities) can bring extrapolations of the XLF from 2–10 keV into agreement with our NuSTAR sample. Ultimately, X-ray spectral analysis of the NuSTAR sources is required to break this degeneracy between the distribution of absorbing column densities and the strength of the Compton reflection component and thus refine our measurements of the XLF. Furthermore, the models that successfully describe the high-redshift population seen by NuSTAR tend to over-predict previous, high-energy measurements of the local XLF, indicating that there is evolution of the AGN population that is not fully captured by the current models

    High-redshift Extremely Red Quasars in X-Rays

    Get PDF
    Quasars may have played a key role in limiting the stellar mass of massive galaxies. Identifying those quasars in the process of removing star formation fuel from their hosts is an exciting ongoing challenge in extragalactic astronomy. In this paper, we present X-ray observations of 11 extremely red quasars (ERQs) with L bol ~ 1047 erg s−1 at z = 1.5–3.2 with evidence for high-velocity (v ⩾\geqslant 1000 km s−1) [O iii] λ5007 outflows. X-rays allow us to directly probe circumnuclear obscuration and to measure the instantaneous accretion luminosity. We detect 10 out of 11 ERQs available in targeted and archival data. Using a combination of X-ray spectral fitting and hardness ratios, we find that all of the ERQs show signs of absorption in the X-rays with inferred column densities of N H ≈ 1023 cm−2, including four Compton-thick candidates (N H ⩾\geqslant 1024 cm−2). We stack the X-ray emission of the seven weakly detected sources, measuring an average column density of N H ~ 8 × 1023 cm−2. The absorption-corrected (intrinsic) 2–10 keV X-ray luminosity of the stack is 2.7 × 1045 erg s−1, consistent with X-ray luminosities of type 1 quasars of the same infrared luminosity. Thus, we find that ERQs are a highly obscured, borderline Compton-thick population, and based on optical and infrared data we suggest that these objects are partially hidden by their own equatorial outflows. However, unlike some quasars with known outflows, ERQs do not appear to be intrinsically underluminous in X-rays for their bolometric luminosity. Our observations indicate that low X-rays are not necessary to enable some types of radiatively driven winds

    Mixtures of wild-type and a pathogenic (E22G) form of Abeta40 in vitro accumulate protofibrils, including amyloid pores

    Get PDF
    Although APP mutations associated with inherited forms of Alzheimer's disease (AD) are relatively rare, detailed studies of these mutations may prove critical for gaining important insights into the mechanism(s) and etiology of AD. Here, we present a detailed biophysical characterization of the structural properties of protofibrils formed by the Arctic variant (E22G) of amyloid-beta protein (Abeta40(ARC)) as well as the effect of Abeta40(WT) on the distribution of the protofibrillar species formed by Abeta40(ARC) by characterizing biologically relevant mixtures of both proteins that may mimic the situation in the heterozygous patients. These studies revealed that the Arctic mutation accelerates both Abeta oligomerization and fibrillogenesis in vitro. In addition, Abeta40(ARC) was observed to affect both the morphology and the size distribution of Abeta protofibrils. Electron microscopy examination of the protofibrils formed by Abeta40(ARC) revealed several morphologies, including: (1) relatively compact spherical particles roughly 4-5 nm in diameter; (2) annular pore-like protofibrils; (3) large spherical particles 18-25 nm in diameter; and (4) short filaments with chain-like morphology. Conversion of Abeta40(ARC) protofibrils to fibrils occurred more rapidly than protofibrils formed in mixed solutions of Abeta40(WT)/Abeta40(ARC), suggesting that co-incubation of Abeta40(ARC) with Abeta40(WT) leads to kinetic stabilization of Abeta40(ARC) protofibrils. An increase in the ratio of Abeta(WT)/Abeta(MUT(Arctic)), therefore, may result in the accumulation of potential neurotoxic protofibrils and acceleration of disease progression in familial Alzheimer's disease mutation carriers
    • …
    corecore