16 research outputs found

    Quantifying conformational changes in GPCRs : glimpse of a common functional mechanism

    Get PDF
    Background: G-protein-coupled receptors (GPCRs) are important drug targets and a better understanding of their molecular mechanisms would be desirable. The crystallization rate of GPCRs has accelerated in recent years as techniques have become more sophisticated, particularly with respect to Class A GPCRs interacting with G-proteins. These developments have made it possible for a quantitative analysis of GPCR geometrical features and binding-site conformations, including a statistical comparison between Class A GPCRs in active (agonist-bound) and inactive (antagonist-bound) states. Results: Here we implement algorithms for the analysis of interhelical angles, distances, interactions and binding-site volumes in the transmembrane domains of 25 Class A GPCRs (7 active and 18 inactive). Two interhelical angles change in a statistically significant way between average inactive and active states: TM3-TM6 (by -9°) and TM6-TM7 (by +12°). A third interhelical angle: TM5-TM6 shows a trend, changing by -9°. In the transition from inactive to active states, average van der Waals interactions between TM3 and TM7 significantly increase as the average distance between them decreases by >2 Å. Average H-bonding between TM3 and TM6 decreases but is seemingly compensated by an increase in H-bonding between TM5 and TM6. In five Class A GPCRs, crystallized in both active and inactive states, increased H-bonding of agonists to TM6 and TM7, relative to antagonists, is observed. These protein-agonist interactions likely favour a change in the TM6-TM7 angle, which creates a narrowing in the binding pocket of activated receptors and an average ~200 Å3 reduction in volume. Conclusions: In terms of similar conformational changes and agonist binding pattern, Class A GPCRs appear to share a common mechanism of activation, which can be exploited in future drug development

    Shining light on an mGlu5 photoswitchable NAM: A theoretical perspective

    Get PDF
    Metabotropic glutamate receptors (mGluRs) are important drug targets because of their involvement in several neurological diseases. Among mGluRs, mGlu5 is a particularly high-profile target because its positive or negative allosteric modulation can potentially treat schizophrenia or anxiety and chronic pain, respectively. Here, we computationally and experimentally probe the functional binding of a novel photoswitchable mGlu5 NAM, termed alloswitch-1, which loses its NAM functionality under violet light. We show alloswitch-1 binds deep in the allosteric pocket in a similar fashion to mavoglurant, the co-crystallized NAM in the mGlu5 transmembrane domain crystal structure. Alloswitch-1, like NAM 2-Methyl-6-(phenylethynyl)pyridine (MPEP), is significantly affected by P655M mutation deep in the allosteric pocket, eradicating its functionality. In MD simulations, we show alloswitch-1 and MPEP stabilize the co-crystallized water molecule located at the bottom of the allosteric site that is seemingly characteristic of the inactive receptor state. Furthermore, both NAMs form H-bonds with S809 on helix 7, which may constitute an important stabilizing interaction for NAM-induced mGlu5 inactivation. Alloswitch-1, through isomerization of its amide group from trans to cis is able to form an additional interaction with N747 on helix 5. This may be an important interaction for amide-containing mGlu5 NAMs, helping to stabilize their binding in a potentially unusual cis-amide state. Simulated conformational switching of alloswitch-1 in silico suggests photoisomerization of its azo group from trans to cis may be possible within the allosteric pocket. However, photoexcited alloswitch-1 binds in an unstable fashion, breaking H-bonds with the protein and destabilizing the co-crystallized water molecule. This suggests photoswitching may have destabilizing effects on mGlu5 binding and functionality

    Understanding the FMN cofactor chemistry within the Anabaena Flavodoxin environment

    No full text
    10 pags., 7 figs., 3 tabs.The chemical versatility of flavin cofactors within the flavoprotein environment allows them to play main roles in the bioenergetics of all type of organisms, particularly in energy transformation processes such as photosynthesis or oxidative phosphorylation. Despite the large diversity of properties shown by flavoproteins and of the biological processes in which they are involved, only two flavin cofactors, FMN and FAD (both derived from the 7,8-dimethyl-10-(1′-D-ribityl)-isoalloxazine), are usually found in these proteins. Using theoretical and experimental approaches we have carried out an evaluation of the effects introduced upon substituting the 7- and/or 8-methyls of the isoalloxazine ring in the chemical and oxido-reduction properties of the different atoms of the ring on free flavins and on the photosynthetic Anabaena Flavodoxin (a flavoprotein that replaces Ferredoxin as electron carrier from Photosystem I to Ferredoxin-NADP + reductase). In Anabaena Flavodoxin both the protein environment and the redox state contribute to modulate the chemical reactivity of the isoalloxazine ring. Anabaena apoflavodoxin is shown to be designed to stabilise/destabilise each one of the FMN redox states (but not of the analogues produced upon substitution of the 7- and/or 8-methyls groups) in the adequate proportions to provide Flavodoxin with the particular properties required for the functions in which it is involved in vivo. The 7- and/or 8-methyl groups of the ixoalloxazine can be discarded as the gate for electrons exchange in Anabaena Fld, but a key role in this process is envisaged for the C6 atom of the flavin and the backbone atoms of Asn58. © 2012 Elsevier B.V.This work has been supported by the Spanish Ministry of Science and Innovation (Grant BIO2010-1493 to M.M). Riboflavin analogues were agenerous gift from Dr. D. Edmondson. We thank Dr. R. Contreras for pro-viding with the algorithm for the determination of Fukui functions. I.L. isthe recipient of a JAE-CSIC fellowship associated to the Instituto Química-Física Rocasolano (CSIC)

    The transient catalytically competent coenzyme allocation into the active site of Anabaena ferredoxin NADP(+)-reductase

    No full text
    Ferredoxin-NADP(+) reductase (FNR) catalyses the electron transfer from ferredoxin to NADP(+) via its flavin FAD cofactor. A molecular dynamics theoretical approach is applied here to visualise the transient catalytically competent interaction of Anabaena FNR with its coenzyme, NADP(+). The particular role of some of the residues identified as key in binding and accommodating the 2'P-AMP moiety of the coenzyme is confirmed in molecular terms. Simulations also indicate that the architecture of the active site precisely contributes to the orientation of the N5 of the FAD isoalloxazine ring and the C4 of the coenzyme nicotinamide ring in the conformation of the catalytically competent hydride transfer complex and, therefore, contributes to the efficiency of the process. In particular, the side chain of the C-terminal Y303 in Anabaena FNR appears key to providing the optimum geometry by reducing the stacking probability between the isoalloxazine and nicotinamide rings, thus providing the required co-linearity and distance among the N5 of the flavin cofactor, the C4 of the coenzyme nicotinamide and the hydride that has to be transferred between them. All these factors are highly related to the reaction efficiency, mechanism and reversibility of the process.</p

    Exploring the Activation Mechanism of the mGlu5 Transmembrane Domain

    Get PDF
    UDTAULÍAs a class C GPCR and regulator of synaptic activity, mGlu5 is an attractive drug target, potentially offering treatment for several neurologic and psychiatric disorders. As little is known about the activation mechanism of mGlu5 at a structural level, potential of mean force calculations linked to molecular dynamics simulations were performed on the mGlu5 transmembrane domain crystal structure to explore various internal mechanisms responsible for its activation. Our results suggest that the hydrophilic interactions between intracellular loop 1 and the intracellular side of TM6 have to be disrupted to reach a theoretically active-like conformation. In addition, interactions between residues that are key for mGlu5 activation (Tyr659 3.44 and Ile751 5.51) and mGlu5 inactivation (Tyr659 3.44 and Ser809 7.39) have been identified. Inasmuch as mGlu5 receptor signaling is poorly understood, potentially showing a complex network of micro-switches and subtle structure-activity relationships, the present study represents a step forward in the understanding of mGlu5 transmembrane domain activation

    Selective Protonation of Acidic Residues Triggers Opsin Activation

    No full text
    Rhodopsin, the visual pigment in the retina, is a Class A G protein-coupled receptor (GPCR) covalently bound to retinal chromophore. In dark conditions, retinal is in the <i>cis</i>-isomeric state, stabilizing the rhodopsin inactive state as an inverse agonist. After light absorption, retinal undergoes an isomerization photoreaction to <i>trans</i>-retinal, which includes a conformational change of the receptor to its active state. In the absence of retinal, the apoprotein opsin presents a low level of constitutive activity, which depends on pH, with higher propensity of activation at acidic pH. To examine the effect and the underlying mechanism that protonation may have on opsin activation, a number of MD simulations were run varying the number and identity of acidic residues selected for protonation. Results show that the combined protonation of D83, E113, and E247 is of special relevance for the induction of receptor activation. Subsequent conformational analysis of the MD trajectories provides a structural mechanistic insight into the opsin activation process. Furthermore, because protonation seems to be a determining step in the activation of other GPCRs, the methodology and rationale used herein can be extended to mechanistic studies of GPCRs in general

    The dimer-of-trimers assembly prevents catalysis at the transferase site of prokaryotic FAD synthase

    No full text
    8 pags, 4 figs, 3 tabs. -- Nine figures are available athttp://www.biophysj.org/biophysj/supplemental/S0006-3495(18)30963-9.Flavin mononucleotide (FMN) and flavin-adenine dinucleotide (FAD) are essential flavoprotein cofactors. A riboflavin kinase (RFK) activity catalyzes riboflavin phosphorylation to FMN, which can then be transformed into FAD by an FMN:adenylyltransferase (FMNAT) activity. Two enzymes are responsible for each one of these activities in eukaryotes, whereas prokaryotes have a single bifunctional enzyme, FAD synthase (FADS). FADS folds in two independent modules: the C-terminal with RFK activity and the N-terminal with FMNAT activity. Differences in structure and chemistry for the FMNAT catalysis among prokaryotic and eukaryotic enzymes pointed to the FMNAT activity of prokaryotic FADS as a potential antimicrobial target, making the structural model of the bacterial FMNAT module in complex with substrates relevant to understand the FADS catalytic mechanism and to the discovery of antimicrobial drugs. However, such a crystallographic complex remains elusive. Here, we have used molecular docking and molecular dynamics simulations to generate energetically stable interactions of the FMNAT module of FADS from Corynebacterium ammoniagenes with ATP/Mg and FMN in both the monomeric and dimer-of-trimers assemblies reported for this protein. For the monomer, we have identified the residues that accommodate the reactive phosphates in a conformation compatible with catalysis. Interestingly, for the dimer-of-trimers conformation, we have found that the RFK module negatively influences FMN binding at the interacting FMNAT module. These results agree with calorimetric data of purified samples containing nearly 100% monomer or nearly 100% dimer-of-trimers, indicating that FMN binds to the monomer but not to the dimer-of-trimers. Such observations support regulation of flavin homeostasis by quaternary C. ammoniagenes FADS assemblies.This work has been supported by Departamento Administrativo de Ciencia,Tecnología e Innovación (Colciencias, programa ‘‘Es tiempo de volver’’ and ‘‘Max Planck agreement’’), Vicerrectoría de Investigación y Extensión Universidad Industrial de Santander (project 1818 to M.C.D), University of Antioquia (Colombia), the Max Planck Society (Germany), the Spanish Ministry of Economy, Industry and Competitiveness (BIO2016-75183-PAEI/FEDER, UE to M.M.) and the Government of Aragón-Fondo Europeo de Desarrollo Regional (E35_17R)

    Mechanism of the Hydride Transfer between Anabaena Tyr303Ser FNRrd/FNRox and NADP(+)/H. A Combined Pre-Steady-State Kinetic/Ensemble-Averaged Transition-State Theory with Multidimensional Tunneling Study

    No full text
    The flavoenzyme ferredoxin-NADP(+) reductase (FNR) catalyzes the production of NADPH during photosynthesis. The hydride-transfer reactions between the Anabaena mutant Tyr303Ser FNRrd/FNRox and NADP(+)/H have been Studied both experimentally and theoretically. Stopped-flow pre-steady-state kinetic measurements have shown that, in contrast to that observed for WT FNR, the physiological hydride transfer from Tyr303Ser FNRrd to NADP(+) does not Occur. Conversely, the reverse reaction does take place with a rate constant just slightly slower than for WT FNR. This latter process shows temperature-dependent rates, but essentially temperature independent kinetic isotope effects, Suggesting the reaction takes place following the vibration-driven tunneling model. In turn, ensemble-averaged variational transition-state theory with multidimensional tunneling calculations provide reaction rate Constant Values and kinetic isotope effects that agree with the experimental results, the experimental and the theoretical values for the reverse process being noticeably similar. The reaction mechanism behind these hydride transfers has been analyzed. The formation of a close contact ionic pair FADH(-):NADP(+) surrounded by the polar environment of the enzyme in the reactant complex of the mutant might be the cause of the huge difference between the direct and the reverse reaction.</p

    Theoretical Study of the Mechanism of the Hydride Transfer between Ferredoxin–NADP<sup>+</sup> Reductase and NADP<sup>+</sup>: The Role of Tyr303

    No full text
    During photosynthesis, ferredoxin–NADP<sup>+</sup> reductase (FNR) catalyzes the electron transfer from ferredoxin to NADP<sup>+</sup> via its FAD cofactor. The final hydride transfer event between FNR and the nucleotide is a reversible process. Two different transient charge-transfer complexes form prior to and upon hydride transfer, FNR<sub>rd</sub>–NADP<sup>+</sup> and FNR<sub>ox</sub>–NADPH, regardless of the hydride transfer direction. Experimental structures of the FNR<sub>ox</sub>:NADP<sup>+</sup> interaction have suggested a series of conformational rearrangements that might contribute to attaining the catalytically competent complex, but to date, no direct experimental information about the structure of this complex is available. Recently, a molecular dynamics (MD) theoretical approach was used to provide a putative organization of the active site that might represent a structure close to the transient catalytically competent interaction of Anabaena FNR with its coenzyme, NADP<sup>+</sup>. Using this structure, we performed fully microscopic simulations of the hydride transfer processes between Anabaena FNR<sub>rd</sub>/FNR<sub>ox</sub> and NADP<sup>+</sup>/H, accounting also for the solvation. A dual-level QM/MM hybrid approach was used to describe the potential energy surface of the whole system. MD calculations using the finite-temperature string method combined with the WHAM method provided the potential of mean force for the hydride transfer processes. The results confirmed that the structural model of the reactants evolves to a catalytically competent transition state through very similar free energy barriers for both the forward and reverse reactions, in good agreement with the experimental hydride transfer rate constants reported for this system. This theoretical approach additionally provides subtle structural details of the mechanism in wild-type FNR and provides an explanation why Tyr303 makes possible the photosynthetic reaction, a process that cannot occur when this Tyr is replaced by a Ser

    Shining light on an mGlu5 photoswitchable NAM: A theoretical perspective

    No full text
    Metabotropic glutamate receptors (mGluRs) are important drug targets because of their involvement in several neurological diseases. Among mGluRs, mGlu5 is a particularly high-profile target because its positive or negative allosteric modulation can potentially treat schizophrenia or anxiety and chronic pain, respectively. Here, we computationally and experimentally probe the functional binding of a novel photoswitchable mGlu5 NAM, termed alloswitch-1, which loses its NAM functionality under violet light. We show alloswitch-1 binds deep in the allosteric pocket in a similar fashion to mavoglurant, the co-crystallized NAM in the mGlu5 transmembrane domain crystal structure. Alloswitch-1, like NAM 2-Methyl-6-(phenylethynyl)pyridine (MPEP), is significantly affected by P655M mutation deep in the allosteric pocket, eradicating its functionality. In MD simulations, we show alloswitch-1 and MPEP stabilize the co-crystallized water molecule located at the bottom of the allosteric site that is seemingly characteristic of the inactive receptor state. Furthermore, both NAMs form H-bonds with S809 on helix 7, which may constitute an important stabilizing interaction for NAM-induced mGlu5 inactivation. Alloswitch-1, through isomerization of its amide group from trans to cis is able to form an additional interaction with N747 on helix 5. This may be an important interaction for amide-containing mGlu5 NAMs, helping to stabilize their binding in a potentially unusual cis-amide state. Simulated conformational switching of alloswitch-1 in silico suggests photoisomerization of its azo group from trans to cis may be possible within the allosteric pocket. However, photoexcited alloswitch-1 binds in an unstable fashion, breaking H-bonds with the protein and destabilizing the co-crystallized water molecule. This suggests photoswitching may have destabilizing effects on mGlu5 binding and functionality
    corecore