115 research outputs found

    Implementing Pasteur's vision for rabies elimination: the evidence base and the needed policy actions

    Get PDF
    It has been 129 years since Louis Pasteur's experimental protocol saved the life of a child mauled by a rabid dog, despite incomplete understanding of the etiology or mechanisms by which the miracle cure worked (1). The disease has since been well understood, and highly effective vaccines are available, yet Pasteur's vision for ridding the world of rabies has not been realized. Rabies remains a threat to half the world's population and kills more than 69,000 people each year, most of them children (2). We discuss the basis for this neglect and present evidence supporting the feasibility of eliminating canine-mediated rabies and the required policy actions

    The impact and control of malignant catarrhal fever in Tanzania

    Get PDF
    Malignant Catarrhal Fever (MCF), an often-lethal infectious disease, presents as a variable complex of lesions in susceptible ungulate species. The disease is caused by a -herpesvirus following transmission from an inapparent carrier host. Two major epidemiological forms exist: wildebeest-associated MCF (WA-MCF), in which the virus is transmitted to susceptible species by wildebeest calves less than approximately four months of age, and sheepassociated MCF (SA-MCF) in which the virus is spread by sheep (primarily adolescents). Due to the lack of an in-vitro propagation system for the causative agent of the more economically significant SA-MCF, and with the expectation that cross-protective immunity may be provided, vaccine development has focused on the more easily propagated alcelaphine herpesvirus-1 (AlHV-1) that causes WA-MCF. In 2008 a direct viral challenge trial showed that a novel vaccine, employing an attenuated AlHV-1 (atAlHV-1) `C5000 virus strain, protected British Friesian-Holstein (FH) cattle against an intranasal challenge with virulent AlHV-1 `C5000 virus. For cattle keeping people living near wildebeest calving areas in sub-Saharan Africa an effective vaccine would have value as it would release them from the costly annual disease avoidance strategy of having to move their herds away from the oncoming wildebeest. On the other hand, an effective vaccine will release herd owners from the need to avoid MCF, allowing them to graze their cattle alongside wildebeest on the highly nutritious pastures of the calving areas. As such conservationists have raised concerns that the development of a vaccine might lead to detrimental grazing competition. The principle objective of this study was to test the novel vaccine on Tanzanian shorthorn zebu cross cattle (SZC).We did this firstly using a natural challenge field trial (Chapter Two) which demonstrated that immunisation with the atAlHV-1 vaccine was well tolerated and induced an oro-nasopharyngeal AlHV-1-specific and -neutralising antibody response. This resulted in an immunity in SZC cattle that was partially protective and reduced naturally transmitted infection by 56%. We also demonstrated that non-fatal infections occurred with a much higher frequency than previously thought. Because the calculated efficacy of the vaccine was less than that seen in British FH cattle we wanted to determine whether host factors, particular to SZC cattle, had impacted the outcomes of the field trial. To do this we repeated the 2008 direct viral challenge trial using SZC cattle (Chapter Four). During this trial we also investigated whether the recombinant bacterial flagellin monomer (FliC), when used as an adjuvant, might improve the vaccine’s efficacy. The findings from this trial indicated that direct challenge with pathogenic AlHV-1 is effective at inducing MCF in SZC cattle and that FliC is not an appropriate adjuvant for this vaccine. Furthermore, with less control group cattle dying of MCF than expected we speculate that SZC cattle may have a degree of resistance to MCF that affords them protection from infection and developing fatal disease. In Chapter Three we investigated aspects of the epidemiology of MCF, specifically whether wildebeest placenta, long implicated by Maasai cattle owners as a source of MCF, might play a role in viral transmission. Additionally, through comparative sequence analysis, at two specific genes (A9.5 and ORF50) of wild-type and atAlHV-1, we investigated whether the `C5000 strain, the source of which was taken from Africa more than 40 years ago, was appropriate for vaccine development. The detection of AlHV-1 virus in approximately 50% of placentae indicated that infection can occur in-utero and that this tissue might play a role in disease transmission. And, despite describing three new alleles of the A9.5 gene (supporting previous evidence that this gene is polymorphic and encodes a secretory protein with interleukin-4 as the major homologue), the observation that the most frequently detected haplotypes, in both wild-type and attenuated AlHV-1, were identical suggests that AlHV-1 has a slow molecular clock and that the attenuated strain was appropriate for vaccine development. In Chapter Five we present the first quantitative assessment of the annual MCF avoidance costs that Maasai pastoralists incur. In particular we estimated that as a result of MCF avoidance 64% of the total daily milk yield during the MCF season was not available to be used by the 81% of the family unit remaining at the permanent boma. This represents an upper-bound loss of approximately 8% of a household0s annual income. Despite these considerable losses we concluded that, given an incidence of fatal MCF in cattle living in wildebeest calving areas of 5% to 10%, if herd owners were to stop trying to avoid MCF by allowing their cattle to graze alongside wildebeest, any gains made through increased availability of milk, improved body condition and reduced energy demands would be offset by an increase in MCF-incidence. With the development of an effective vaccine, however, this alternative strategy might become optimal. The overall conclusion we draw therefore is that, despite the substantial costs incurred each year avoiding MCF, the partial protection afforded by the novel vaccine strategy is not sufficient to warrant a wholesale change in disease avoidance strategy. Nonetheless, even the partial protection provided by this vaccine could be of value to protect animals that cannot be moved, for example where some of the herd remain at the boma to provide milk or where land-use changes make traditional disease avoidance difficult. Furthermore, the vaccine may offer a feasible solution to some of the current land-use challenges and conflicts, providing a degree of protection to valuable livestock where avoidance strategies are not possible, but with less risk of precipitating the potentially damaging environmental consequences, such as overgrazing of highly nutritious seasonal pastures, that might result if herd owners decide they no longer need to avoid wildebeest

    Controlling human rabies: the development of an effective, cheap and locally made Passive Cooling Device for storing thermotolerant animal rabies vaccines

    Get PDF
    Thermotolerant vaccines greatly improved the reach and impact of large-scale vaccination programs to eliminate diseases such as smallpox, polio and rinderpest. A recent study demonstrated that the potency of the Nobivac® Canine Rabies vaccine was not impacted following experimental storage at 30 °C for three months. We conducted a study to develop a passive cooling device (PCD) that could store thermotolerant vaccines under fluctuating subambient temperatures. Through a participatory process with local communities in Northern Tanzania, we developed innovative PCD designs for local manufacture. A series of field experiments were then carried out to evaluate the effectiveness of five PCDs for vaccine storage under varying climatic conditions. Following iterative improvement, a final prototype “Zeepot Clay” was developed at the cost of US$11 per unit. During a further field-testing phase over a 12-month period, the internal temperature of the device remained below 26 °C, despite ambient temperatures exceeding 42 °C. Our study thus demonstrated that locally designed PCDs have utility for storing thermotolerant rabies vaccines at subambient temperatures. These results have application for the scaling up of mass dog vaccination programs in low-and-middle income countries, particularly for hard-to-reach populations with limited access to power and cold-chain vaccine storage

    Rabies control and elimination: a test case for One Health

    Get PDF
    One Health approaches have already been shown to be successful in controlling rabies in different parts of the world. In this article, the latest in Veterinary Record's series promoting One Health, Sarah Cleaveland and her colleagues at the University of Glasgow discuss why integrated strategies are needed to enhance the cost effectiveness of measures to control and eliminate rabies, particularly in low-income countries

    Thermotolerance of an inactivated rabies vaccine for dogs

    Get PDF
    This study provides the first robust data that the antibody response of dogs vaccinated with Nobivac® Rabies vaccine stored for several months at high temperatures (up to 30 °C) is not inferior to that of dogs vaccinated with vaccine stored under recommended cold-chain conditions (2–8 °C). A controlled and randomized non-inferiority study was carried out comparing the four-week post vaccination serological responses of Tanzanian village dogs inoculated with vaccine which had been stored at elevated temperatures for different periods of time with those of dogs vaccinated with the same product stored according to label recommendations. Specifically, the neutralizing antibody response following the use of vaccine which had been stored for up to six months at 25 °C or for three months at 30 °C was not inferior to that following the use of cold-chain stored vaccine. These findings provide reassurance that the vaccine is likely to remain efficacious even if exposed to elevated temperatures for limited periods of time and, under these circumstances, it can safely be used and not necessarily destroyed or discarded. The availability of thermotolerant vaccines has been an important factor in the success of several disease control and elimination programs and could greatly increase the capacity of rabies vaccination campaigns to access hard to reach communities in Africa and Asia. We have not confirmed a 3-year duration of immunity for the high temperature stored vaccine, however because annual re-vaccination is usually practiced for dogs presented for vaccination during campaigns in Africa and Asia this should not be a cause for concern. These findings will provide confidence that, for rabies control and elimination programs using this vaccine in low-income settings, more flexible delivery models could be explored, including those that involve limited periods of transportation and storage at temperatures higher than that currently recommended

    Pasteurella multocida Involved in Respiratory Disease of Wild Chimpanzees

    Get PDF
    Pasteurella multocida can cause a variety of diseases in various species of mammals and birds throughout the world but nothing is known about its importance for wild great apes. In this study we isolated P. multocida from wild living, habituated chimpanzees from Taï National Park, Côte d'Ivoire. Isolates originated from two chimpanzees that died during a respiratory disease outbreak in 2004 as well as from one individual that developed chronic air-sacculitis following this outbreak. Four isolates were subjected to a full phenotypic and molecular characterisation. Two different clones were identified using pulsed field gel electrophoresis. Multi Locus Sequence Typing (MLST) enabled the identification of previous unknown alleles and two new sequence types, ST68 and ST69, were assigned. Phylogenetic analysis of the superoxide dismutase (sodA) gene and concatenated sequences from seven MLST-housekeeping genes showed close clustering within known P. multocida isolated from various hosts and geographic locations. Due to the clinical relevance of the strains described here, these results make an important contribution to our knowledge of pathogens involved in lethal disease outbreaks among endangered great apes

    Carnivore parvovirus ecology in the Serengeti ecosystem: vaccine strains circulating and new host species identified

    Get PDF
    Carnivore parvoviruses infect wild and domestic carnivores and cross- species transmission is believed to occur. However, viral dynamics are not well understood nor the consequences to wild carnivore populations of the introduction of new strains into wild ecosystems. To clarify the ecology of these viruses in a multi-host system such as the Serengeti ecosystem and identify potential threats for wildlife conservation we analyzed, through real-time PCR, 152 samples belonging to 14 wild carnivore species and 62 samples from healthy domestic dogs. We detected parvovirus DNA in several wildlife tissues. Of the wild carnivore and domestic dog samples tested, 13% and 43%, respectively, were positive for carnivore parvovirus infection, but little evidence of transmission between the wild and domestic carnivores was detected. Instead, we describe two different epidemiological scenarios with separated routes of transmission: first, an endemic feline parvovirus (FPV) route of transmission maintained by wild carnivores inside the Serengeti National Park (SNP); and second, a canine parvovirus (CPV) route of transmission among domestic dogs living around the periphery of the SNP. Twelve FPV sequences were characterized, new host-virus associations involving wild dogs, jackals and hyaenas were discovered and our results suggest mutations in the fragment of the gene were not required to infect different carnivore species. In domestic dogs, six sequences belonged to the CPV-2a strain, whilst 11 belonged to the CPV-2 vaccine-derived strain. This is the first description of a vaccine-derived parvovirus strain being transmitted naturally. IMPORTANCE: Carnivore parvoviruses are widespread among wild and domestic carnivores, which are vulnerable to severe disease under certain circumstances. The findings from this study, which further the understanding of carnivore parvovirus epidemiology, suggest that feline parvoviruses are endemic in wild carnivores in the Serengeti National Park (SNP); further, that canine parvoviruses are present in the dog population living around the SNP, with little evidence of transmission into wild carnivore species; and finally, that the detection of vaccine-derived virus (described here for the first time circulating naturally in domestic dogs) highlights the importance of performing epidemiological research in the region

    Alcelaphine Herpesvirus-1 (Malignant Catarrhal Fever Virus) in Wildebeest Placenta: Genetic Variation of ORF50 and A9.5 Alleles

    Get PDF
    <div><p>Alcelaphine herpesvirus–1 (AlHV-1), a causative agent of malignant catarrhal fever in cattle, was detected in wildebeest (<i>Connochaetes taurinus</i>) placenta tissue for the first time. Although viral load was low, the finding of viral DNA in over 50% of 94 samples tested lends support to the possibility that placental tissue could play a role in disease transmission and that wildebeest calves are infected <i>in utero</i>. Two viral loci were sequenced to examine variation among virus samples obtained from wildebeest and cattle: the ORF50 gene, encoding the lytic cycle transactivator protein, and the A9.5 gene, encoding a novel polymorphic viral glycoprotein. ORF50 was well conserved with six newly discovered alleles differing at only one or two base positions. In contrast, while only three new A9.5 alleles were discovered, these differed by up to 13% at the nucleotide level and up to 20% at the amino acid level. Structural homology searching performed with the additional A9.5 sequences determined in this study adds power to recent analysis identifying the four-helix bundle cytokine interleukin-4 (IL4) as the major homologue. The majority of MCF virus samples obtained from Tanzanian cattle and wildebeest encoded A9.5 polypeptides identical to the previously characterized A9.5 allele present in the laboratory maintained AlHV-1 C500 strain. This supports the view that AlHV-1 C500 is suitable for the development of a vaccine for wildebeest-associated MCF.</p></div

    Economic burden of livestock disease and drought in Northern Tanzania

    Get PDF
    Livestock-dependent communities face considerable livestock disease and drought risk, which can impact herd value, income and consumption. This paper summarizes economic data collected from 404 households in Arusha and Manyara regions of Northern Tanzania in 2016. They provide estimates for (i) herd loss due to disease and drought as a fraction of herd value and income, (ii) the relative risk of disease and drought in small versus large ruminants and (iii) the relationship between livestock disease outcomes and household expenditures. We find that disease and drought losses comprise 10 to 4% of sheep, cattle and goat herd value, and amount to an estimated 62.1% of household income. The drought and disease risk ratios for small versus large ruminants indicate that small stock face higher disease risk, while large ruminants are affected more by drought. Furthermore, cattle abortions are negatively related to schooling expenditure and positively associated with increases in off-farm food expenditure related to livestock management, presumably through increased investments in prevention and therapy. These results suggest that climatic variability and livestock diseases are an important source of economic vulnerability and reducing this burden may help alleviate poverty in livestock-dependent communities
    corecore