5 research outputs found

    Genotypic and antimicrobial characterization of pathogenic bacteria at different stages of cattle slaughtering in southern Brazil

    No full text
    Meat can be contaminated in different stages of the slaughtering process and the identification of these stages is the starting point to implement adequate control measures. The objectives of this study were to assess the presence of pathogenic microorganisms in cattle carcasses, to identify the most important contamination points of the slaughtering process, and to evaluate the possible risk factors related to them in a cattle slaughterhouse. To this aim, 108 cattle carcasses were sampled at three stages of the slaughtering process: Point 1 (hides after bleeding); Point 2 (carcasses after hide removal); and Point 3 (carcasses immediately after division). Escherichia coli O157:H7, Listeria monocytogenes and Salmonella Livingstone were isolated from the carcasses. Phenotypic and genotypic characterization indicated that there was cross-contamination among animals, since bacteria with identical genotypic and phenotypic profiles were isolated from different animals at the same sampling day. Furthermore, this is the first report about the isolation of E. coli O157:H7 in a bovine slaughterhouse from southern Brazil

    Vorapaxar in the secondary prevention of atherothrombotic events

    Get PDF
    Item does not contain fulltextBACKGROUND: Thrombin potently activates platelets through the protease-activated receptor PAR-1. Vorapaxar is a novel antiplatelet agent that selectively inhibits the cellular actions of thrombin through antagonism of PAR-1. METHODS: We randomly assigned 26,449 patients who had a history of myocardial infarction, ischemic stroke, or peripheral arterial disease to receive vorapaxar (2.5 mg daily) or matching placebo and followed them for a median of 30 months. The primary efficacy end point was the composite of death from cardiovascular causes, myocardial infarction, or stroke. After 2 years, the data and safety monitoring board recommended discontinuation of the study treatment in patients with a history of stroke owing to the risk of intracranial hemorrhage. RESULTS: At 3 years, the primary end point had occurred in 1028 patients (9.3%) in the vorapaxar group and in 1176 patients (10.5%) in the placebo group (hazard ratio for the vorapaxar group, 0.87; 95% confidence interval [CI], 0.80 to 0.94; P<0.001). Cardiovascular death, myocardial infarction, stroke, or recurrent ischemia leading to revascularization occurred in 1259 patients (11.2%) in the vorapaxar group and 1417 patients (12.4%) in the placebo group (hazard ratio, 0.88; 95% CI, 0.82 to 0.95; P=0.001). Moderate or severe bleeding occurred in 4.2% of patients who received vorapaxar and 2.5% of those who received placebo (hazard ratio, 1.66; 95% CI, 1.43 to 1.93; P<0.001). There was an increase in the rate of intracranial hemorrhage in the vorapaxar group (1.0%, vs. 0.5% in the placebo group; P<0.001). CONCLUSIONS: Inhibition of PAR-1 with vorapaxar reduced the risk of cardiovascular death or ischemic events in patients with stable atherosclerosis who were receiving standard therapy. However, it increased the risk of moderate or severe bleeding, including intracranial hemorrhage. (Funded by Merck; TRA 2P-TIMI 50 ClinicalTrials.gov number, NCT00526474.)
    corecore