31 research outputs found

    The Blast Fungus Decoded:Genomes in Flux

    Get PDF
    Plant disease outbreaks caused by fungi are a chronic threat to global food security. A prime case is blast disease, which is caused by the ascomycete fungus Magnaporthe oryzae (syn. Pyricularia oryzae), which is infamous as the most destructive disease of the staple crop rice. However, despite its Linnaean binomial name, M. oryzae is a multihost pathogen that infects more than 50 species of grasses. A timely study by P. Gladieux and colleagues (mBio 9:e01219-17, 2018, https://doi.org/10.1128/mBio.01219-17) reports the most extensive population genomic analysis of the blast fungus thus far. M. oryzae consists of an assemblage of differentiated lineages that tend to be associated with particular host genera. Nonetheless, there is clear evidence of gene flow between lineages consistent with maintaining M. oryzae as a single species. Here, we discuss these findings with an emphasis on the ecologic and genetic mechanisms underpinning gene flow. This work also bears practical implications for diagnostics, surveillance, and management of blast diseases

    Alternative splicing regulation in plants by SP7-like effectors from symbiotic arbuscular mycorrhizal fungi

    Get PDF
    Most plants in natural ecosystems associate with arbuscular mycorrhizal (AM) fungi to survive soil nutrient limitations. To engage in symbiosis, AM fungi secrete effector molecules that, similar to pathogenic effectors, reprogram plant cells. Here we show that the Glomeromycotina-specific SP7 effector family impacts on the alternative splicing program of their hosts. SP7-like effectors localize at nuclear condensates and interact with the plant mRNA processing machinery, most prominently with the splicing factor SR45 and the core splicing proteins U1-70K and U2AF35. Ectopic expression of these effectors in the crop plant potato and in Arabidopsis induced developmental changes that paralleled to the alternative splicing modulation of a specific subset of genes. We propose that SP7-like proteins act as negative regulators of SR45 to modulate the fate of specific mRNAs in arbuscule-containing cells. Unraveling the communication mechanisms between symbiotic fungi and their host plants will help to identify targets to improve plant nutrition

    Developing a novel tool to assess the ability to self-administer medication - A systematic evaluation of patients' video recordings in the ABLYMED study

    Get PDF
    Background: Older people often experience medication management problems due to multimorbidity, polypharmacy and medication complexity. There is often a large gap between patients' self-reported and actual abilities to handle the self -administration of their medication. Here we report on the development and evaluation of a new tool to assess the ability of non-demented hospitalized patients to self-administer medication in different dosage forms. To this end, we video-recorded the patients' medication management performance and implemented a novel assessment scheme, which was applied by several independent raters.Methods: Sixty-seven in-patients > 70 years of age and regularly taking > 5 different drugs autonomously of the ABLYMED study agreed to the video recording of their medication management performance with five different dosage forms. All raters underwent a training and applied a standardized assessment form and written guide with rating rules for evaluation. In a pilot phase, video recordings of three patients were rated by 19 raters (15 medical students, two expert raters to determine a reference standard, and two main raters who later rated the total sample). In the rating phase, based on the ratings obtained from the two main raters, we determined interrater (assessed every section of 20 patients as agreement between the raters at one point of time) and intrarater (assessed as consistency within each rater across three points of time) agreement by intraclass correlation analysis.Results: In the pilot phase we obtained an overall sufficient agreement pattern, with an adjustment of the rating rules for patches. In the rating phase we achieved satisfactory agreement between the two raters (interrater reliability) and across different points of time (intrarater reliability). For two dosage forms (eye-drops and pen), rater training needed to be repeated to reach satisfactory levels.Discussion: Our novel rating procedure was found to be objective, valid and reproducible, given appropriate training of the raters. Our findings are an important part of a larger research project to implement a novel assessment for the ability to self-administer medication in different dosage forms. Further, they can support the development of patient trainings to improve medication management and secure independent living.Paul-Kuth Foundatio

    A clone resource of Magnaporthe oryzae effectors that share sequence and structural similarities across host-specific lineages

    Get PDF
    The blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae) is a destructive plant pathogen that can infect about 50 species of both wild and cultivated grasses, including important crops such as rice and wheat. M. oryzae is composed of genetically differentiated lineages that tend to infect specific host genera. To date, most studies of M. oryzae effectors have focused on the rice-infecting lineage. We describe a clone resource of 195 effectors of Magnaporthe species predicted from all the major host-specific lineages. These clones are freely available as Golden Gate-compatible entry plasmids. Our aim is to provide the community with an open source effector clone library to be used in a variety of functional studies. We hope that this resource will encourage studies of M. oryzae effectors on diverse host species

    Large scale genome assemblies of Magnaporthe oryzae rice isolates from Italy

    Get PDF
    We report long-range sequencing of nine rice-infecting Magnaporthe oryzae isolates from different rice-growing regions of Italy using Oxford Nanopore Technology. We aquired chromosome-level genome assemblies, polished with Illumina short reads, and removed mitochondrial sequences to improve the quality of the assemblies.We provide the genome assemblies to the public with open access

    NEUES SEHEN – Aktuelle Ansätze der Digitalen Archäologie in der Objekt- und Bildwissenschaft, Teil 3/4: Bildmustererkennung und Einsatz von KI

    Get PDF
    Die Konferenz NEUES SEHEN. Aktuelle Ansätze der Digitalen Archäologie in der Objekt und Bildwissenschaft, die vom 20. bis 22.05.2022 an der Universität Trier stattfand, untersuchte das Potenzial digitaler Werkzeuge und Methoden, die auf archäologische Objekte und Bilder angewendet werden können. Entsprechend den vier Sessions der Konferenz werden wir in Digital Classics Online (DCO) eine Reihe von vier Beiträgen veröffentlichen, die jeweils eine kurze Einführung der Organisatoren, die Abstracts der während der Session vorgestellten Projekte und eine Mitschrift einer Gruppendiskussion zwischen den jeweiligen Referenten enthalten. Dieser dritte Teil konzentriert sich auf das Potenzial der Mustererkennung und die Anwendung von KI in der archäologischen Forschung

    A single amino acid polymorphism in a conserved effector of the multihost blast fungus pathogen expands host-target binding spectrum

    Get PDF
    Accelerated gene evolution is a hallmark of pathogen adaptation and specialization following host-jumps. However, the molecular processes associated with adaptive evolution between host-specific lineages of a multihost plant pathogen remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), host specialization on different grass hosts is generally associated with dynamic patterns of gain and loss of virulence effector genes that tend to define the distinct genetic lineages of this pathogen. Here, we unravelled the biochemical and structural basis of adaptive evolution of APikL2, an exceptionally conserved paralog of the well-studied rice-lineage specific effector AVR-Pik. Whereas AVR-Pik and other members of the six-gene AVR-Pik family show specific patterns of presence/absence polymorphisms between grass-specific lineages of M. oryzae, APikL2 stands out by being ubiquitously present in all blast fungus lineages from 13 different host species. Using biochemical, biophysical and structural biology methods, we show that a single aspartate to asparagine polymorphism expands the binding spectrum of APikL2 to host proteins of the heavy-metal associated (HMA) domain family. This mutation maps to one of the APikL2-HMA binding interfaces and contributes to an altered hydrogen-bonding network. By combining phylogenetic ancestral reconstruction with an analysis of the structural consequences of allelic diversification, we revealed a common mechanism of effector specialization in the AVR-Pik/APikL2 family that involves two major HMA-binding interfaces. Together, our findings provide a detailed molecular evolution and structural biology framework for diversification and adaptation of a fungal pathogen effector family following host-jumps

    Multiple horizontal mini-chromosome transfers drive genome evolution of clonal blast fungus lineages

    Get PDF
    Crop disease pandemics are often driven by asexually reproducing clonal lineages of plant pathogens that reproduce asexually. How these clonal pathogens continuously adapt to their hosts despite harboring limited genetic variation, and in absence of sexual recombination remains elusive. Here, we reveal multiple instances of horizontal chromosome transfer within pandemic clonal lineages of the blast fungus Magnaporthe (Syn. Pyricularia) oryzae. We identified a horizontally transferred 1.2Mb accessory mini-chromosome which is remarkably conserved between M. oryzae isolates from both the rice blast fungus lineage and the lineage infecting Indian goosegrass (Eleusine indica), a wild grass that often grows in the proximity of cultivated cereal crops. Furthermore, we show that this mini-chromosome was horizontally acquired by clonal rice blast isolates through at least nine distinct transfer events over the past three centuries. These findings establish horizontal mini-chromosome transfer as a mechanism facilitating genetic exchange among different host-associated blast fungus lineages. We propose that blast fungus populations infecting wild grasses act as genetic reservoirs that drive genome evolution of pandemic clonal lineages that afflict cereal crops

    Genomic rearrangements generate hypervariable mini-chromosomes in host-specific isolates of the blast fungus

    Get PDF
    Supernumerary mini-chromosomes–a unique type of genomic structural variation–have been implicated in the emergence of virulence traits in plant pathogenic fungi. However, the mechanisms that facilitate the emergence and maintenance of mini-chromosomes across fungi remain poorly understood. In the blast fungus Magnaporthe oryzae (Syn. Pyricularia oryzae), mini-chromosomes have been first described in the early 1990s but, until very recently, have been overlooked in genomic studies. Here we investigated structural variation in four isolates of the blast fungus M. oryzae from different grass hosts and analyzed the sequences of mini-chromosomes in the rice, foxtail millet and goosegrass isolates. The mini-chromosomes of these isolates turned out to be highly diverse with distinct sequence composition. They are enriched in repetitive elements and have lower gene density than core-chromosomes. We identified several virulence-related genes in the mini-chromosome of the rice isolate, including the virulence-related polyketide synthase Ace1 and two variants of the effector gene AVR-Pik. Macrosynteny analyses around these loci revealed structural rearrangements, including inter-chromosomal translocations between core- and mini-chromosomes. Our findings provide evidence that mini-chromosomes emerge from structural rearrangements and segmental duplication of core-chromosomes and might contribute to adaptive evolution of the blast fungus

    A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution

    Get PDF
    Throughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, that is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal–associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained transspecies in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to respond to AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs
    corecore