201 research outputs found

    Growth Kinetics in a Phase Field Model with Continuous Symmetry

    Full text link
    We discuss the static and kinetic properties of a Ginzburg-Landau spherically symmetric O(N)O(N) model recently introduced (Phys. Rev. Lett. {\bf 75}, 2176, (1995)) in order to generalize the so called Phase field model of Langer. The Hamiltonian contains two O(N)O(N) invariant fields ϕ\phi and UU bilinearly coupled. The order parameter field ϕ\phi evolves according to a non conserved dynamics, whereas the diffusive field UU follows a conserved dynamics. In the limit NN \to \infty we obtain an exact solution, which displays an interesting kinetic behavior characterized by three different growth regimes. In the early regime the system displays normal scaling and the average domain size grows as t1/2t^{1/2}, in the intermediate regime one observes a finite wavevector instability, which is related to the Mullins-Sekerka instability; finally, in the late stage the structure function has a multiscaling behavior, while the domain size grows as t1/4t^{1/4}.Comment: 9 pages RevTeX, 9 figures included, files packed with uufiles to appear on Phy. Rev.

    A Soluble Phase Field Model

    Get PDF
    The kinetics of an initially undercooled solid-liquid melt is studied by means of a generalized Phase Field model, which describes the dynamics of an ordering non-conserved field phi (e.g. solid-liquid order parameter) coupled to a conserved field (e.g. thermal field). After obtaining the rules governing the evolution process, by means of analytical arguments, we present a discussion of the asymptotic time-dependent solutions. The full solutions of the exact self-consistent equations for the model are also obtained and compared with computer simulation results. In addition, in order to check the validity of the present model we confronted its predictions against those of the standard Phase field model and found reasonable agreement. Interestingly, we find that the system relaxes towards a mixed phase, depending on the average value of the conserved field, i.e. on the initial condition. Such a phase is characterized by large fluctuations of the phi field.Comment: 13 pages, 8 figures, RevTeX 3.1, submitted to Physical Review

    Electrostatically Shielded Quantum Confined Stark Effect Inside Polar Nanostructures

    Get PDF
    The effect of electrostatic shielding of the polarization fields in nanostructures at high carrier densities is studied. A simplified analytical model, employing screened, exponentially decaying polarization potentials, localized at the edges of a QW, is introduced for the ES-shielded quantum confined Stark effect (QCSE). Wave function trapping within the Debye-length edge-potential causes blue shifting of energy levels and gradual elimination of the QCSE red-shifting with increasing carrier density. The increase in the e−h wave function overlap and the decrease of the radiative emission time are, however, delayed until the “edge-localization” energy exceeds the peak-voltage of the charged layer. Then the wave function center shifts to the middle of the QW, and behavior becomes similar to that of an unbiased square QW. Our theoretical estimates of the radiative emission time show a complete elimination of the QCSE at doping densities ≥1020 cm−3, in quantitative agreement with experimental measurements

    Summing up the perturbation series in the Schwinger Model

    Get PDF
    Perturbation series for the electron propagator in the Schwinger Model is summed up in a direct way by adding contributions coming from individual Feynman diagrams. The calculation shows the complete agreement between nonperturbative and perturbative approaches.Comment: 10 pages (in REVTEX

    Expulsion of Magnetic Flux Lines from the Growing Superconducting Core of a Magnetized Quark Star

    Full text link
    The expulsion of magnetic flux lines from a growing superconducting core of a quark star has been investigated. The idea of impurity diffusion in molten alloys and an identical mechanism of baryon number transport from hot quark-gluon-plasma phase to hadronic phase during quark-hadron phase transition in the early universe, micro-second after big bang has been used. The possibility of Mullins-Sekerka normal-superconducting interface instability has also been studied.Comment: Thoroughly revised version. Accepted for Astrophysics & Space Scienc

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter

    On the Low Surface Magnetic Field Structure of Quark Stars

    Full text link
    Following some of the recent articles on hole super-conductivity and related phenomena by Hirsch \cite{H1,H2,H3}, a simple model is proposed to explain the observed low surface magnetic field of the expected quark stars. It is argued that the diamagnetic moments of the electrons circulating in the electro-sphere induce a magnetic field, which forces the existing quark star magnetic flux density to become dilute. We have also analysed the instability of normal-superconducting interface due to excess accumulation of magnetic flux lines, assuming an extremely slow growth of superconducting phase through a first order bubble nucleation type transition.Comment: 24 pages REVTEX, one .eps figure, psfig.sty is include

    Qualitative behavior of solutions for thermodynamically consistent Stefan problems with surface tension

    Full text link
    The qualitative behavior of a thermodynamically consistent two-phase Stefan problem with surface tension and with or without kinetic undercooling is studied. It is shown that these problems generate local semiflows in well-defined state manifolds. If a solution does not exhibit singularities in a sense made precise below, it is proved that it exists globally in time and its orbit is relatively compact. In addition, stability and instability of equilibria is studied. In particular, it is shown that multiple spheres of the same radius are unstable, reminiscent of the onset of Ostwald ripening.Comment: 56 pages. Expanded introduction, added references. This revised version is published in Arch. Ration. Mech. Anal. (207) (2013), 611-66
    corecore