31 research outputs found

    Successful conservation of global waterbird populations depends on effective governance

    Get PDF
    Understanding global patterns of biodiversity change is crucial for conservation research, policies and practices. However, the lack of systematically collected data at a global level has limited our understanding of biodiversity changes and their local-scale drivers in most ecosystems. We address this challenge by focusing on wetlands, which are among the most biodiverse and productive environments providing essential ecosystem services, but are also amongst the most seriously threatened ecosystems. Using birds as an indicator taxon of wetland biodiversity, we model time-series abundance data for 461 waterbird species at 25,769 survey sites across the globe. We show that countries’ effective governance is the strongest predictor of waterbird abundance changes as well as benefits of conservation efforts. Waterbirds are declining especially where governance is, on average, less effective, such as Western/Central Asia, sub-Saharan Africa and South America. Higher protected area coverage facilitates waterbird increases, but only in countries with more effective governance. Our findings highlight that sociopolitical instability can lead to biodiversity loss and also undermine the benefit of existing conservation efforts, such as the expansion of protected area coverage. Data deficiency in areas with less effective governance could cause an underestimation of the extent of biodiversity crisis. Alternative language abstracts are in Supplementary Information

    Whooper Swan Cygnus cygnus January population censuses for Northwest Mainland Europe, 1995-2015

    Get PDF
    Internationally coordinated censuses of Whooper Swans Cygnus cygnus across continental northwest Europe were undertaken in mid-winter 1995, 2000, 2005, 2010 and 2015. The estimate of 138,500 birds in 2015, the highest to date, represented a more than doubling of the population size (at an annual increase of 4.1%) since the first census total of 59,000 swans in 1995. The largest increase was in Denmark, where numbers almost trebled from 21,740 in 1995 to 62,620 in 2015. More than 97% of all swans were counted in just six countries. The percentage of total numbers increased significantly between 1995 and 2015 in Denmark (from 36.5% to 45.2%) and Germany (26.0% to 34.7%), but declined significantly in Sweden (14.2% to 8.4%), Norway (13.1% to 3.6%), Poland (6.2% to 4.0%) and the Netherlands (2.4% to 1.7%). The counts show an increasing discrepancy between national trends in abundance for Whooper Swans in Sweden and especially in Denmark in comparison with results obtained only from mid-winter International Waterbird Count (IWC) site coverage. This demonstrates the increasing tendency for Whooper Swans to winter in areas away from traditionally counted IWC sites and confirms the continued need for a regular cycle of coordinated dedicated swan counts to anchor population trends generated from other data sources.Peer reviewe

    Protected area characteristics that help waterbirds respond to climate warming

    Get PDF
    Protected area networks help species respond to climate warming. However, the contribution of a site's environmental and conservation-relevant characteristics to these responses is not well understood. We investigated how composition of nonbreeding waterbird communities (97 species) in the European Union Natura 2000 (N2K) network (3018 sites) changed in response to increases in temperature over 25 years in 26 European countries. We measured community reshuffling based on abundance time series collected under the International Waterbird Census relative to N2K sites' conservation targets, funding, designation period, and management plan status. Waterbird community composition in sites explicitly designated to protect them and with management plans changed more quickly in response to climate warming than in other N2K sites. Temporal community changes were not affected by the designation period despite greater exposure to temperature increase inside late-designated N2K sites. Sites funded under the LIFE program had lower climate-driven community changes than sites that did not received LIFE funding. Our findings imply that efficient conservation policy that helps waterbird communities respond to climate warming is associated with sites specifically managed for waterbirds.Peer reviewe

    Benefits of protected areas for nonbreeding waterbirds adjusting their distributions under climate warming

    Get PDF
    Climate warming is driving changes in species distributions and community composition. Many species have a so-called climatic debt, that is, shifts in range lag behind shifts in temperature isoclines. Inside protected areas (PAs), community changes in response to climate warming can be facilitated by greater colonization rates by warm-dwelling species, but also mitigated by lowering extirpation rates of cold-dwelling species. An evaluation of the relative importance of colonization-extirpation processes is important to inform conservation strategies that aim for both climate debt reduction and species conservation. We assessed the colonization-extirpation dynamics involved in community changes in response to climate inside and outside PAs. To do so, we used 25 years of occurrence data of nonbreeding waterbirds in the western Palearctic (97 species, 7071 sites, 39 countries, 1993-2017). We used a community temperature index (CTI) framework based on species thermal affinities to investigate species turnover induced by temperature increase. We determined whether thermal community adjustment was associated with colonization by warm-dwelling species or extirpation of cold-dwelling species by modeling change in standard deviation of the CTI (CTISD). Using linear mixed-effects models, we investigated whether communities in PAs had lower climatic debt and different patterns of community change than communities outside PAs. For CTI and CTISD combined, communities inside PAs had more species, higher colonization, lower extirpation, and lower climatic debt (16%) than communities outside PAs. Thus, our results suggest that PAs facilitate 2 independent processes that shape community dynamics and maintain biodiversity. The community adjustment was, however, not sufficiently fast to keep pace with the large temperature increases in the central and northeastern western Palearctic. Our results underline the potential of combining CTI and CTISD metrics to improve understanding of the colonization-extirpation patterns driven by climate warming.Peer reviewe

    Positive impacts of important bird and biodiversity areas on wintering waterbirds under changing temperatures throughout Europe and North Africa

    Get PDF
    Migratory waterbirds require an effectively conserved cohesive network of wetland areas throughout their range and life-cycle. Under rapid climate change, protected area (PA) networks need to be able to accommodate climate-driven range shifts in wildlife if they are to continue to be effective in the future. Thus, we investigated geographical variation in the relationship between local temperature anomaly and the abundance of 61 waterbird species during the wintering season across Europe and North Africa during 1990-2015. We also compared the spatio-temporal effects on abundance of sites designated as PAs, Important Bird and Biodiversity Areas (IBAs), both, or neither designation (Unlisted). Waterbird abundance was positively correlated with temperature anomaly, with this pattern being strongest towards north and east Europe. Waterbird abundance was higher inside IBAs, whether they were legally protected or not. Trends in waterbird abundance were also consistently more positive inside both protected and unprotected IBAs across the whole study region, and were positive in Unlisted wetlands in southwestern Europe and North Africa. These results suggest that IBAs are important sites for wintering waterbirds, but also that populations are shifting to unprotected wetlands (some of which are IBAs). Such IBAs may therefore represent robust candidate sites to expand the network of legally protected wetlands under climate change in north-eastern Europe. These results underscore the need for monitoring to understand how the effectiveness of site networks is changing under climate change.Peer reviewe

    Protected area characteristics that help waterbirds respond to climate warming

    Get PDF
    Protected area networks help species respond to climate warming. However, the contribution of a site's environmental and conservation-relevant characteristics to these responses is not well understood. We investigated how composition of nonbreeding waterbird communities (97 species) in the European Union Natura 2000 (N2K) network (3018 sites) changed in response to increases in temperature over 25 years in 26 European countries. We measured community reshuffling based on abundance time series collected under the International Waterbird Census relative to N2K sites' conservation targets, funding, designation period, and management plan status. Waterbird community composition in sites explicitly designated to protect them and with management plans changed more quickly in response to climate warming than in other N2K sites. Temporal community changes were not affected by the designation period despite greater exposure to temperature increase inside late-designated N2K sites. Sites funded under the LIFE program had lower climate-driven community changes than sites that did not received LIFE funding. Our findings imply that efficient conservation policy that helps waterbird communities respond to climate warming is associated with sites specifically managed for waterbirds

    Adumbrate: Motion Detection with Unreliable Range Data

    No full text
    deals with applications running on static networks, along with some localisation requirements, but without any motion detection hardware. However, many of these applications require some level of motion detection, if only to notice the cases when a network ceases to be statically located and starts to have moving nodes. As most of the currently used application scenarios rely on the assumption that motion will not happen, if a node does move it will cause significant amounts of damage to any protocols relying on this static assumption e.g. routing, localisation, aggregation, etc. In this paper we look at methods for detecting moving nodes, using only RSSI data, including an anchor-less solution to ensure that we can always detect motion. Our methods are intended to work in co-operation with existing static network localisation algorithms. I

    Localisation in Mobile Anchor Networks

    No full text
    Localisation is required for many ad-hoc sensor network applications. Therefore, much work has been done regarding techniques for localisation, mainly using anchors (nodes with known locations). However, there has been little study of how anchors are likely to be distributed in applications, and how to perform localisation with more realistic anchor distributions. In this pape
    corecore