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Understanding global patterns of biodiversity change is crucial for conservation research, 20 

policies and practices. However, the lack of systematically collected data at a global level has 21 

limited our understanding of biodiversity changes and their local-scale drivers in most 22 

ecosystems. We address this challenge by focusing on wetlands, which are among the most 23 

biodiverse and productive environments1,2 providing essential ecosystem services3,4, but are 24 

also amongst the most seriously threatened ecosystems3,5. Using birds as an indicator taxon of 25 

wetland biodiversity, we model time-series abundance data for 461 waterbird species at 26 

25,769 survey sites across the globe. We show that countries’ effective governance is the 27 

strongest predictor of waterbird abundance changes as well as benefits of conservation efforts. 28 

Waterbirds are declining especially where governance is, on average, less effective, such as 29 

Western/Central Asia, sub-Saharan Africa and South America. Higher protected area 30 

coverage facilitates waterbird increases, but only in countries with more effective governance. 31 

Our findings highlight that sociopolitical instability can lead to biodiversity loss and also 32 

undermine the benefit of existing conservation efforts, such as the expansion of protected area 33 

coverage. Data deficiency in areas with less effective governance could cause an 34 

underestimation of the extent of biodiversity crisis. Alternative language abstracts are in 35 

Supplementary Information. 36 

 37 

Quantifying global patterns of biodiversity change is essential for assessing anthropogenic 38 

impacts on biodiversity, conservation priorities and the effectiveness of conservation 39 

efforts6,7. It has, therefore, been identified as a research priority by major international 40 

bodies8,9. However, most taxa have serious gaps in the spatial extent and resolution covered 41 
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by available data10, meaning our current view of global biodiversity change is limited to 42 

coarse-resolution patterns11 or data-rich countries12 and protected areas13. This has impeded 43 

the identification of hotspots of abundance losses and analysis of local-scale drivers of change 44 

at the global scale (see Supplementary Discussion). 45 

Wetlands cover more than 1,280 million hectares of coastal, inland and human-made 46 

habitats globally3,14. Despite being highly biologically diverse and productive1,2, providing a 47 

range of crucial ecosystem functions and services1,3,4, wetlands have been degraded and  lost 48 

more than any other ecosystems3. Yet the lack of appropriate data has hampered assessments 49 

of changes in wetland biodiversity globally. 50 

Here we address this knowledge gap by examining waterbirds as an indicator taxon for 51 

assessing the status of biodiversity in wetland ecosystems. Waterbirds have a long history of 52 

systematic monitoring, providing a global dataset on abundance changes with unprecedented 53 

spatial extent and resolution15. Modelling the global data for waterbirds enabled us to test two 54 

fundamental questions that are rarely explored together: (i) where are global changes in 55 

species abundance concentrated? (ii) What explains changes in abundance at the community, 56 

species and population levels? For the second question we tested three types of hypothesised 57 

predictors: (i) anthropogenic impacts (represented by surface water change, economic and 58 

human population growth, agricultural expansion and climate change), (ii) conservation 59 

efforts and effectiveness (protected area coverage and governance), and (iii) biological 60 

characteristics of species (range size, migratory status and body size) (Extended Data Table 61 

1). Our dataset included 2,463,403 count records in January/February for the past three 62 

decades on 461 waterbird species at 25,769 survey sites throughout the globe (Extended Data 63 
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Fig. 1). Using a hierarchical Bayesian model we estimated the global distribution of changes 64 

in each species’ abundance between 1990 and 2013 at 1º×1º resolution (Supplementary Data 65 

S1). We then summarised the changes at the three levels: mean changes in abundance across 66 

all waterbird species present in each grid cell (community-level changes), mean changes 67 

across all grid cells for each species (species-level changes) and changes in each grid cell for 68 

each species (population-level changes). 69 

In most species, population-level changes in abundance varied markedly across 70 

geographical ranges. Some species that have increased in Europe showed severe declines in 71 

other regions (Fig. 1a-c) and vice versa (see Supplementary Data S1 for detail). Declines were 72 

especially pronounced in Africa for grebes, flamingos, pelicans, cormorants and shorebirds, in 73 

South America for shorebirds, storks, ibises, herons, waterfowl, cranes and rails, and in 74 

Western/Central Asia for waterfowl, cranes and rails (Fig. 1d-k). 75 

We found major community-level abundance losses in areas where the biodiversity 76 

assessments have been limited, namely Western/Central Asia, sub-Saharan Africa and South 77 

America (Fig. 2a). On average, community-level declines were most severe in South America 78 

with 0.95 % annual decline, equating to a 21% decline over 25 years (Fig. 2b). The decline 79 

was also severe, but predominantly inland, in Western/Central Asia. In contrast, Europe has 80 

experienced community-level increases. Note, however, that even in regions showing 81 

community-level increases, some species show severe abundance declines (Supplementary 82 

Data S1). These geographic patterns largely reflected patterns in migrants (Extended Data 83 

Fig. 2a). Non-migrants were observed only in some regions and showed declines in South 84 

America and part of East and South/Southeast Asia (Extended Data Fig. 2b). 85 
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Of the eight explanatory variables representing anthropogenic impacts and conservation 86 

efforts and effectiveness (see Methods), the strongest predictor of community-level 87 

abundance changes was countries’ governance, i.e. how effectively the authorities of a 88 

country are exercising rules and enforcement mechanisms (Fig. 3a). Waterbird communities 89 

declined most in countries with less effective governance (e.g., Western/Central Asia and 90 

South America) and increased where it was more effective (e.g., Europe and North America, 91 

Fig. 3b). Governance also had an interactive effect with protected area coverage (Fig. 3a); 92 

extensive protected area coverage was associated with community-level increases, but only in 93 

areas with more effective governance (Extended Data Fig. 3a). Community-level declines 94 

were also pronounced in areas with higher water loss (e.g., Western/Central Asia16, Extended 95 

Data Fig. 3b). 96 

To ascertain the causes of community-level changes, we partitioned the effects of 97 

explanatory variables into species-level (explaining variations in species-level changes 98 

between species) and population-level effects (explaining variations in population-level 99 

changes within species) for 293 species with sufficient data. Species-level changes were 100 

explained by the governance interaction with protected area coverage, gross domestic product 101 

(GDP) growth rates and body mass (Fig. 4a). Consistent with the community-level analysis, 102 

waterbird species with a higher coverage of protected areas increased more, but only in 103 

countries with more effective governance (Fig. 4c). Species in rapidly-growing economies 104 

and small-bodied species experienced greater declines (Fig. 4b, d). Governance was also the 105 

best predictor of population-level abundance changes, and most of the species with significant 106 

governance effects showed more population-level declines in areas with less effective 107 
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governance (Extended Data Fig. 4 and Supplementary Discussion). These main conclusions 108 

were robust even when considering the correlation between governance and GDP per capita, 109 

and also to other sensitivity analyses (Extended Data Figs. 5-7, Supplementary Discussion). 110 

Although our data are not spatially complete (Extended Data Fig. 1 and Supplementary 111 

Discussion), quantifying abundance changes within each species over large geographic areas 112 

uncovered novel hotspots of threats to bird species in wetland ecosystems. Earlier attempts 113 

did not identify biodiversity loss in, for example, Western/Central Asia, mainly because 114 

relevant data were unavailable (Supplementary Discussion). This spatial overlap between 115 

general data gaps and biodiversity loss could cause an underestimation of the ongoing 116 

biodiversity crisis, and the observation highlights the need for the global monitoring of 117 

species’ abundances. 118 

Our results highlight the importance of governance, presumably environmental aspects of 119 

governance (see Methods), in explaining global patterns in waterbird abundance changes. 120 

Local and regional studies have increasingly shown the environmental consequences of 121 

ineffective governance, such as species population declines17, deforestation18 and agricultural 122 

expansion19. Ineffective governance is often associated with the lack of environmental 123 

concerns, enforcement and investments20-22, leading to habitat loss and degradation. For 124 

example, unsustainable water management and dam construction in Western/Central Asia 125 

have caused drastic losses in permanent water over the past 30 years16. As a result, in Iran 126 

even some wetlands designated as protected areas have dried out23. Wetlands in central 127 

Argentina lack legal protection or regulations on water use, and many have shown 128 

considerable losses24. Ineffective hunting regulations can also explain abundance losses under 129 
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ineffective governance. Political instability can weaken legal enforcement, thereby promoting 130 

unsustainable, often illegal, killing even in protected areas25. Numerous waterbird species are 131 

under severe hunting pressures in Iran23 and South America26. As wetland loss and hunting 132 

pressure are the main threats to most taxa, the hotspots of waterbird declines identified here 133 

merit urgent attention as areas of potential loss and degradation of wetland biodiversity, its 134 

functions and services. 135 

This study also corroborates the benefits of protected areas in improving the conservation 136 

status of waterbird species, although these benefits are applicable only to those in countries 137 

with more effective governance. Our result gives a strong scientific basis at the global scale 138 

for the argument that effective governance is critical for protected areas in achieving their 139 

goals27. Protected area coverage can be high even in developing countries with less effective 140 

governance (Extended Data Fig. 8). These protected areas, however, were insufficient for 141 

maintaining stable waterbird populations since 1990. Supporting this argument in wealthier 142 

regions with more effective governance, such as Western Europe, waterbirds have responded 143 

positively to the establishment of refuges and stronger legal protection under measures 144 

governed by the EU Birds Directive28. 145 

Although the global coverage of protected areas continues to increase, our findings 146 

indicate that ineffective governance could undermine the benefits of such conservation efforts 147 

towards improving the status of global biodiversity. Levels of governance should be 148 

considered in the processes of identifying and prioritising areas of conservation importance, 149 

and distributing future efforts in research and funding. There is also an urgent need to 150 

measure, monitor, improve, and raise awareness about environmental governance globally. 151 
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Global conservation conventions and specific agreements and frameworks could mobilise 152 

international resources and expertise to strengthen effective governance. Governance is now 153 

recognised to be essential for economic growth, social development and the eradication of 154 

poverty and hunger4. Efforts to better understand and improve governance as well as to find 155 

means of improving the effectiveness of specific measures when governance is weak 156 

therefore provide common ground for conservationists, social scientists, policy makers and 157 

the public for achieving sustainable development.158 
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 255 

Fig. 1. Population-level changes in waterbird abundance in each 1º ×1º grid cell between 256 

1990 and 2013. (a) Ardea alba, (b) Arenaria interpres and (c) Anas acuta as examples 257 

(declines in red and increases in blue). Species’ geographical ranges are shaded. (d-k) 258 

Histograms show population-level changes for all species in each of the eight taxon at all grid 259 

cells in each region (regions shown in the inserted map). See Methods for the definition of 260 

each species group.261 
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 262 

Fig. 2. Mean changes in abundance across 461 waterbird species (i.e., community-level changes) between 1990 and 2013. (a) Global 263 

distribution and (b) mean with 95% confidence intervals across all grid cells in each region (regions shown in the inserted map). The numbers of 264 

species (and grid cells in parentheses) observed are also shown above bars.265 
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 266 

Fig. 3. Effects of predictors on community-level changes in waterbird abundance. (a) 267 

Estimated coefficients in the multivariate analysis (n=2,079). Posterior medians with 95% and 268 

50% (thick lines) credible intervals are shown. Coefficients with 95% credible intervals not 269 

overlapping with zero are shown in red. The coefficients represent the effect size of the 270 

variables, which were standardised. (b) The relationship between community-level changes 271 

and countries’ governance, where each circle represents a country and its size is related to the 272 

number of 1º ×1º grid cells with estimates, with the color indicating the region. The regression 273 

line is shown.274 
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 275 

Fig. 4. Effects of predictors on species-level abundance changes in 293 waterbird species that were recorded in at least ten grid cells (see 276 

Supplementary Data S2 for details). (a) Estimated coefficients with 95% and 50% (thick lines) credible intervals (those not overlapping with 277 

zero shown in red) and the species-level relationship between abundance changes and (b) Gross Domestic Product (GDP) growth rates, (c) 278 

proportion of sites covered by protected areas, (d) body mass. Values and regression lines for species in areas with more (above median) and less 279 

(below median) effective governance are shown in blue and red, respectively, in (c).280 
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Methods 281 

Data 282 

Waterbird count data 283 

Data used in this study consisted of site-specific annual counts based on the International 284 

Waterbird Census (IWC) coordinated by Wetlands International29 and the Christmas Bird 285 

Count (CBC) by the National Audubon Society in the USA30. 286 

The IWC, launched in 1967, is a scheme for monitoring waterbird numbers, covering 287 

more than 25,000 sites in over 100 countries with more than 15,000 observers. The 288 

coordination of the IWC is further divided into four regional schemes corresponding to the 289 

major migratory flyways of the world: the African-Eurasian Waterbird Census (AEWC), 290 

Asian Waterbird Census (AWC), Caribbean Waterbird Census (CWC) and Neotropical 291 

Waterbird Census (NWC). We did not use data from the Caribbean Waterbird Census, as, 292 

having started in 2010, it only provides short-term data. The survey methodology is 293 

essentially the same across the four regional schemes. Population counts are typically carried 294 

out once every year in mid-January. Additional counts are also conducted in other months, 295 

particularly in July in the Southern Hemisphere, but we only used counts in January and 296 

February for consistency. This means that our data from the Northern Hemisphere are for 297 

non-breeding populations while those in the Southern Hemisphere also include some breeding 298 

populations. In each country that is covered by the survey, national coordinators manage an 299 

inventory of wetland sites (hereafter, survey sites), including sites of international- or 300 

national-level recognition (e.g., Ramsar sites, Important Bird Areas, national parks etc.). Each 301 

survey site is generally defined by boundaries so that observers know precisely which areas 302 

are to be covered in the surveys. The observers consist of a wide variety of volunteers, but 303 

national coordinators usually train them using materials produced by Wetlands International 304 
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to ensure the quality of count data. Survey sites (normally up to a few km2) are typically 305 

surveyed by about two observers for up to four hours, while larger sites can require a group of 306 

observers working over several days. The time of survey on any given day depends on the 307 

type of survey sites: inland sites are normally surveyed during the morning or late afternoon 308 

whereas coastal sites are surveyed over the high tide period (mangrove areas and nearby 309 

mudflats are, however, covered during low tides). Surveys cover waterbirds, which are 310 

defined as bird species that are ecologically dependent on wetlands29. Counts are usually 311 

made by scanning flocks of waterbirds with a telescope or binoculars and counting each 312 

species. Zero counts are not always recorded, and thus are inferred using a set of criteria (see 313 

Methods for more detail). Count records, together with associated information, are submitted 314 

to the national coordinators, who compile the submitted records, check their validity and 315 

submit those records to Wetlands International. See29,39 for more details on survey 316 

methodology. 317 

As the IWC does not cover North America, we also used data based on the CBC, which 318 

has been conducted annually since 1900, and now includes over 2,400 count circles (defined 319 

as survey sites in this study) and involves more than 70,000 observers each year73. Each CBC 320 

consists of a tally of all bird species detected within 24.1 km in diameter, on a single day 321 

between 14th December and 5th January. The majority of circles (and most historical data) 322 

are from the US and Canada. Observers join groups that survey subunits of the circle during 323 

the course of the day using a variety of transportation methods (mostly on foot, or in a car, but 324 

can include boats, skis, or snowmobiles). The number of observers and the duration of counts 325 

vary among circles and through time. The total number of survey hours per count has been 326 

recorded as a covariate to account for the variable duration of and participation in the count. 327 

We only used records on waterbird species in this paper. 328 



20 

 

We compiled data from each scheme by species, except for data based on the African-329 

Eurasian Waterbird Census, where data had already been stored by flyway within each 330 

species31. As data based on the Neotropical Waterbird Census are only available after 1990, 331 

we only used post-1990 data for other regions as well. The latest records were in 2013. 332 

Although the data included 487 waterbird species, we excluded species with 20 or fewer 333 

records from the analyses, and this has resulted in 461 species being analysed in this study 334 

(see Supplementary Data S2 for the full list of species). For the IWC data, we generated zero 335 

counts using an established approach31. In this approach, we first established a list of all 336 

species observed in each country, and assumed a zero count of any species that were on the 337 

list but not recorded at a particular site on a particular day if the site was surveyed on that day, 338 

as shown by the presence of any other species’ record(s), and if no multi-species code related 339 

to the species (e.g., Anatinae spp. for species of the genus Anas) was recorded for the site-date 340 

combination. We projected all survey sites onto a Behrmann equal-area cylindrical projection 341 

and assigned them to grid cells with a grain size of 96.49 km, or approximately 1º at 30º N/S. 342 

When visualising the estimated abundance changes (e.g., Figs. 2b and 3b), the North and 343 

South American regions correspond to the regions covered by the CBC and NWC, 344 

respectively. The regions covered by the AEWC and AWC were further divided into a total of 345 

six regions based on socio-economic and ecological differences: Europe, Africa and 346 

Western/Central Asia (AEWC), and South/Southeast Asia, East Asia and Russia, and Oceania 347 

(AWC). 348 

 349 

Explanatory variables 350 

To explain variations in waterbird abundance changes over space and species, we first set up 351 

multiple hypotheses based on earlier studies and identified explanatory variables that 352 



21 

 

represent those hypotheses (Extended Data Table 1). We aggregated all the explanatory 353 

variables but those on species characteristics to the same 1º×1º grid cells. 354 

As measures of governance we used the Worldwide Governance Indicators, which 355 

summarise six broad dimensions of governance: Voice and Accountability, Political Stability 356 

and Absence of Violence, Government Effectiveness, Regulatory Quality, Rule of Law, and 357 

Control of Corruption32. A study of six South American countries19 found that pro-358 

environmental behaviours are associated with environmental aspects of governance rather 359 

than conventional dimensions of governance represented by the Worldwide Governance 360 

Indicators. At the global scale, however, the mean of the Worldwide Governance Indicators 361 

was strongly correlated with the Environmental Performance Index (EPI)33, one of the 362 

indicators of environmental governance used in the study19 (r = 0.71, n = 180). This indicates 363 

that the Worldwide Governance Indicators are also a good predictor of environmental aspects 364 

of governance at the global scale. Further, the EPI consists of multiple indicators, some of 365 

which are directly related to our measures of conservation efforts, such as terrestrial protected 366 

areas and species protection. We thus decided not to use the EPI in our analysis, as using it 367 

together with the coverage of protected areas in our analysis could result in redundancies. 368 

In the World Database on Protected Areas, not every protected area has information on 369 

designation years. Thus we calculated the proportion of sites located within any protected 370 

area, assuming that it also reflects the proportion of sites covered by protected areas 371 

designated at least before 2013 (the latest survey year of count data used in this study). To 372 

examine the sensitivity of our conclusions to this assumption, we also calculated, as the most 373 

conservative approach, the proportion of sites covered only by protected areas that are known 374 

to have been designated before 1990 (the oldest survey year), and conducted the same 375 
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analyses using the variable and presented the results in Extended Data Fig. 5 and 376 

Supplementary Discussion. When assessing the effectiveness of protected areas, confounding 377 

factors can mask or mimic the impacts of protected areas. We thus controlled for effects of 378 

potential drivers of abundance changes (listed in Extended Data Table 1) by including them, 379 

together with protected area coverage, in the same multivariate models. 380 

Based on the Birdlife Data Zone (http://datazone.birdlife.org/home), the migratory status 381 

of the 461 species analysed in this study falls into four categories: full migrant, altitudinal 382 

migrant, nomadic and not a migrant. In this study we defined species categorised as full 383 

migrant or altitudinal migrant as migrants. 384 

 385 

Other data 386 

We derived information on generation length (in years) from the BirdLife Data Zone and the 387 

Red List category by the International Union for Conservation of Nature from the BirdLife 388 

Checklist of the Birds of the World34 for each species. Generation length was not available in 389 

five species, for which we used the mean values across all species in the same genus. We used 390 

generation length as well as the bird species distribution maps of the world35 for the 391 

visualisation of results (see the legend of Supplementary Data S1 for more detail). Species 392 

groups used in Fig. 1 are based on the IOC World Bird List36: coursers, gulls, terns and auks 393 

(Alcidae, Glareolidae, Laridae and Stercorariidae), grebes and flamingos (Phoenicopteridae 394 

and Podicipedidae), loons and petrels (Gaviidae and Procellariidae), pelicans, boobies and 395 

cormorants (Anhingidae, Fregatidae, Pelecanidae, Phalacrocoracidae and Sulidae), rails and 396 

cranes (Aramidae, Gruidae and Rallidae), shorebirds (Burhinidae, Charadriidae, Dromadidae, 397 

Haematopodidae, Ibidorhynchidae, Jacanidae, Recurvirostridae, Rostratulidae and 398 
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Scolopacidae), storks, ibises and herons (Ardeidae, Ciconiidae and Threskiornithidae), and 399 

waterfowl (Anatidae and Anhimidae).  400 

 401 

Statistical Analyses 402 

Model for quantifying abundance changes 403 

To account for missing values, large observation errors and spatial structure in the data, we 404 

used a hierarchical Bayesian spatial model and quantified population-level changes in the 405 

abundance of each species within each 1º×1º grid cell. This model is an extension of the 406 

model developed and used to quantify waterbird abundance changes in earlier studies37,38, and 407 

based on the site effect for site i, overall year effect for year t and the cell-specific year effect 408 

for grid cell j and year t. The overall year effect βt is assumed to be affected by the year effect 409 

in the previous two years: 410 

𝛽𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(𝛽𝑡−1 + 𝑟(𝛽𝑡−1 − 𝛽𝑡−2), 𝜎𝑜
2 ).    (1) 411 

Here σo
2 is the variance of the overall year effect, r ranges from 0 to 1 and determined the 412 

smoothness of the estimated curve: with r = 0, the overall year effect is modelled as a simple 413 

random-walk process, while other values lead to a correlated random walk with different 414 

degrees of smoothness (a larger r causes a more smoothed curve). The cell-specific year effect 415 

βj(i),t is drawn from a normal distribution with mean βt is as follows: 416 

𝛽𝑗(𝑖),𝑡~𝑁𝑜𝑟𝑚𝑎𝑙(𝛽𝑡, 𝜎𝛽
2 ).      (2) 417 

Including the variance in the year effect σβ
2 allows the model to account for variations in 418 

trends of population counts among grid cells. j(i) indicates that grid cell j includes site i. 419 

Assuming the same population trend across all sites within each grid cell, the mean count μi,t 420 
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in site i in grid cell j and year t is modelled with the cell-specific year effect βj(i),t, the site 421 

effect αi, the spatially correlated random effect γj(i) and the overdispersion effect δi,t: 422 

log(𝜇𝑖,𝑡) =  𝛼𝑖 +  𝛽𝑗(𝑖),𝑡  +  𝛾𝑗(𝑖) + 𝛿𝑖,𝑡.    (3) 423 

Here, αi and δi,t are drawn from a mean zero normal distribution with variance σα
2 and σδ

2, 424 

respectively. γj(i) is drawn from an intrinsic Gaussian conditional autoregressive (CAR) prior 425 

distribution: 426 

𝛾𝑗(𝑖)|𝛾𝑘~𝑁𝑜𝑟𝑚𝑎𝑙(
∑ 𝑤𝑗,𝑘𝛾𝑘𝑗≠𝑘

𝑛𝑗
,

𝜎𝛾
2

𝑛𝑗
),     (4) 427 

where wj,k = 1 if grid cells j and k are neighbors, and 0 otherwise. nj is the total number of 428 

neighbors of grid cell j and neighbors here are defined as those grid cells directly adjacent, 429 

including those diagonal. σγ
2 controls the amount of variation between the random effects. The 430 

observed count yi,t in site i and year t is assumed to derive from a Poisson distribution with 431 

mean μi,t. 432 

We assumed constant survey efforts over time in the IWC, as regular, standardised 433 

surveys (constant methods, efforts and timing) are highly encouraged39 (also see 434 

Supplementary Discussion). However, survey efforts in the CBC are known to vary through 435 

time. Thus using the total number of survey hours per count as the measure of survey efforts, 436 

we explicitly accounted for the effort effect for the CBC data following40: 437 

log(𝜇𝑖,𝑡) = 𝛼𝑖 + 𝛽𝑗(𝑖),𝑡 + 𝛾𝑗(𝑖) + 𝛿𝑖,𝑡 +
𝐵((

𝜁𝑖,𝑡

𝜁̅
)

𝑝

−1)

𝑝
.   (5) 438 

Here ζi,t is the total number of survey hours per count and 𝜁 is the mean value of ζi,t. B and p 439 

are parameters determining a range of relationships between effort and the number of birds 440 

counted40. To test if accounting for survey efforts can change the conclusions of this paper, 441 
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we also applied the model without the effort effect to the CBC data and compared the 442 

estimated rate of abundance change within each grid cell between the models for each of the 443 

159 species with more than two grid cells. The estimated spatial patterns in abundance 444 

changes by the two models were highly correlated (median Pearson’s r = 0.99, minimum r = 445 

0.88), indicating the validity of the model without the effort effect used for the IWC data. 446 

Further discussions on the potential effects of temporal changes in survey efforts are provided 447 

in Supplementary Discussion. 448 

We applied the models to count data of each species at the regional population level. For 449 

example, count data on Eurasian wigeon Mareca penelope are separately compiled as five 450 

different populations: three (northwest European, Black Sea/Mediterranean, and southwest 451 

Asian/northeast African) in the African-Eurasian Waterbird Census, one in the Asian 452 

Waterbird Census, and one in the CBC. In this case, we applied the models separately to each 453 

of the five populations. As the result, we analysed 775 regional populations of 461 species 454 

(see Supplementary Data S2 for the full list of species). For 38 regional populations where no 455 

grid cells with count records were adjacent to each other, we simply dropped the spatially 456 

correlated random effect γj(i) from equations (3) and (5). For 32 regional populations with only 457 

one grid cell that includes more than one survey site, we dropped γj(i) and also replaced the 458 

cell-specific year effect βj(i),t with the overall year effect βt. For 22 regional populations with 459 

only one survey site, we applied a generalised linear model with a Poisson distribution, using 460 

observed counts as the response variable and years as the explanatory variable, and used the 461 

estimated slope as the rate of abundance change. 462 
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Using only grid cells with, on average, four or more non-zero records per site, we fitted 463 

the models to the data with the Markov chain Monte Carlo (MCMC) method in WinBUGS 464 

1.4.341 and the R2WinBUGS package42 in R 3.3.243. Prior distributions of parameters were set 465 

as non-informatively as possible, so as to produce estimates similar to those generated by a 466 

maximum likelihood method. We used Gamma distributions with mean of 1 and variance of 467 

100 for the inverses of σo
2, σβ

2, σα
2 and σδ

2 and σγ
2, normal distributions with mean of 0 and 468 

variance of 100 for β1, β2 and B, a beta distribution with mean of 0.5 and variance of 0.083 (α 469 

= β = 1), which is a uniform distribution, for r, and a uniform distribution on the interval [-4, 470 

4] for p following an earlier study44. Each MCMC algorithm was initially run with three 471 

chains with different initial values for 300,000 iterations with the first 200,000 discarded as 472 

burn-in and the remainder thinned to one in every 20 iterations to save storage space. Model 473 

convergence was checked with R-hat values45. If the models did not converge with the initial 474 

conditions, we increased iterations up to 5,000,000 (with the first 1,000,000 discarded and the 475 

remainder thinned to one in every 800). We decided to remove grid cells where parameter 476 

estimates did not converge even with the increased iterations, although the number of 477 

removed cells was very small (median 2.5 grid cells in 20 out of the 775 (2.6%) regional 478 

populations). 479 

To estimate the population-level change in abundance (since 1990) of each species in a 480 

particular grid cell, we first regressed the estimates of the cell-specific year effect βj(i),t in 481 

every posterior sample against years. To account for uncertainty in slope estimates in this 482 

regression, we derived for every posterior sample a slope estimate from a normal distribution 483 

with the mean of the estimated mean slope and standard deviation of the standard error of the 484 
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slope. We then calculated the mean, median, variance and 2.5 and 97.5 percentiles of the 485 

estimated slopes from all posterior samples. We aggregated all estimates by species based on 486 

the definition by the BirdLife International34. We used the mean and 2.5 and 97.5 percentiles 487 

of the estimated slopes for creating species-level maps (Fig. 1a-c and Supplementary Data 488 

S1). To calculate community-level changes in abundance (Fig. 2a) and those for different 489 

migratory status (Extended Data Fig. 2), we used the mean slopes across all species, or all 490 

species in a particular group, observed in each grid cell, weighted by the inverse of slope 491 

variance in each species to account for uncertainties. To further calculate mean community-492 

level changes in each region (Fig. 2b), we used the mean of the community-level changes 493 

across all grid cells in each region, weighted by the inverse of associated variance. 494 

 495 

Driver analysis 496 

We first tested correlations among the nine spatial explanatory variables in 2,079 1º×1º grid 497 

cells with abundance change estimates (Extended Data Table 2). GDP per capita and 498 

governance showed a relatively strong correlation (r = 0.76). Thus considering that GDP 499 

growth rates are another measure of economic growth, we decided to exclude GDP per capita 500 

from the main analyses but instead test its effect in a separate set of analyses where 501 

governance was replaced with GDP per capita. Here considering the hypothesised non-linear 502 

relationship between GDP per capita and species abundance changes (Extended Data Table 503 

1), we used linear and quadratic terms of GDP per capita. We presented the results with GDP 504 

per capita in Extended Data Fig. 5 and Supplementary Discussion. 505 
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To identify factors associated with waterbird abundance changes at the community, 506 

species, and population levels, we conducted two types of analyses, both of which were 507 

implemented with WinBUGS 1.4.3 and the R2WinBUGS package in R 3.3.2. 508 

In the first analysis, where the response variable was community-level changes in 509 

abundance within each grid cell (Fig. 2a), we used a CAR model: 510 

𝜇𝑖 =  𝛼 +  𝜷𝑿𝒊  +  𝛾𝑖,       (6) 511 

where the community-level change ri in cell i was assumed to derive from a normal 512 

distribution with mean μi and variance σμ
2. β represents the vector of regression coefficients 513 

and Xi that of explanatory variables. Based on the hypotheses shown in Extended Data Table 514 

1, we used eight explanatory variables in each grid cell: surface water change, GDP growth 515 

rates, changes in human population density, crop area, temperature, and precipitation, 516 

protected area coverage, and governance. We also tested three interaction terms between 517 

latitudes and temperature change and also latitudes and precipitation change, as population 518 

responses to temperature and precipitation can vary along the latitudes46, and governance and 519 

protected area coverage, as governance can affect the effectiveness of conservation efforts47. 520 

All explanatory variables were standardised before model fitting. γi is the spatially-correlated 521 

random effect using an intrinsic Gaussian CAR prior distribution with variance σγ
2, as 522 

described in equation (4). Again prior distributions of parameters were set as non-523 

informatively as possible; we used Gamma distributions with mean of 1 and variance of 1000 524 

for the inverse of σμ
2 and σγ

2, normal distributions with mean of 0 and variance of 1000 for βj, 525 

and an improper uniform distribution (i.e., a uniform distribution on an infinite interval) for 526 

the intercept α as recommended48. Each MCMC algorithm was run with three chains with 527 

different initial values for 1,000,000 iterations with the first 500,000 discarded as burn-in and 528 
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the remainder thinned to one in every 100 iterations to save storage space. Model 529 

convergence was checked with R-hat values. 530 

Next for 293 species observed at ten or more grid cells, we adopted the within-subject 531 

centring approach49 under a hierarchical modelling framework to explicitly distinguish 532 

species-level effects (explaining variations in species-level abundance changes between 533 

species) and population-level effects (explaining variations in population-level abundance 534 

changes within species) of explanatory variables. In this model the species effect μs, 535 

representing the species-level change in abundance of species s, is drawn from a normal 536 

distribution with mean of νs and variance of σν
2. νs is further modelled with species-level 537 

explanatory variables: 538 

𝑣𝑠 = 𝛼 + ∑ 𝛽𝐵𝑘𝑥̅𝑘,𝑠
9
𝑘=1 + ∑ 𝛽𝐵𝑘𝑧𝑘,𝑠

12
𝑘=10 + 𝜂𝑠,   (7) 539 

where α is the global intercept and βBk represents the species-level effect. 𝑥̅𝑘,𝑠 is the mean of 540 

spatial explanatory variable k across all grid cells where species s was recorded. Note that 541 

even if the estimated species-level abundance changes are biased due to geographical biases 542 

in available grid cells, they are correctly matched up with 𝑥̅𝑘,𝑠, as the calculation of both 543 

variables is based on the same set of grid cells. The spatial explanatory variables used were 544 

based on the hypotheses in Extended Data Table 1, but we dropped changes in human 545 

population density and crop area, as these were least influential in the analysis of community-546 

level population changes and also in a preliminary analysis of this model. Thus we used the 547 

remaining six explanatory variables (surface water change, GDP growth rates, changes in 548 

temperature and precipitation, protected area coverage, and governance) and the same three 549 

interaction terms as in the community-level analysis. zk,s represents three explanatory 550 

variables on species characteristics described in Extended Data Table 1. ηs is a random term 551 
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that accounts for phylogenetic dependence among species and is drawn from a multivariate 552 

normal distribution50,51: 553 

𝜂𝑠 ~ 𝑀𝑉𝑁(𝟎, 𝛿2𝛴𝜆),       (8) 554 

𝛴𝜆  =  λΣ + (1 − λ)𝐈       (9) 555 

where Σ is a scaled variance-covariance matrix calculated from an ultrametric phylogenetic 556 

tree. By scaling Σ to a height of one, we can interpret δ2 as the residual variance50. For the 557 

strength of phylogenetic signal to vary, we also incorporated Pagel’s λ52,53 into the matrix in 558 

equation (9) with the identity matrix I. Here λ is a coefficient that multiplies the off-diagonal 559 

elements of Σ and a λ close to zero implies that the phylogenetic signal in the data is low, 560 

suggesting independence in the error structure of the data points, whereas a λ close to one 561 

suggests a good agreement with the Brownian Motion evolution model and thus suggests 562 

correlation in the error structure50,53. To incorporate uncertainties54 in phylogenetic trees in the 563 

calculation of Σ, we used a sample of 100 trees from a comprehensive avian phylogeny55 as 564 

the prior distribution for our analysis50. More specifically, one of the 100 trees was randomly 565 

drawn in each iteration and used for the calculation of Σ. 566 

The population-level change in abundance rs,i of species s in grid cell i was then assumed 567 

to derive from a normal distribution with mean μs,i and variance σμ
2, where μs,i is modelled 568 

using the species effect μs: 569 

𝜇𝑠,𝑖 = 𝜇𝑠 + ∑ 𝛽𝑊𝑠,𝑗
(𝑥𝑗,𝑖 − 𝑥̅𝑗,𝑠)6

𝑗=1 + 𝛾𝑠,𝑖.   (10) 570 

Here βWs,j represents the population-level effect for species s, explaining within-species 571 

variations in population-level abundance changes (μs,i − μs) by within-species variations in 572 

explanatory variables (𝑥𝑗,𝑖 − 𝑥̅𝑗,𝑠), where xj,i is explanatory variable j in grid cell i and 𝑥̅𝑗,𝑠 is 573 
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the mean of xj for species s. The species-specific βWs,j is the random effect each governed by 574 

hyper-parameters as: 575 

𝛽𝑊𝑠,𝑗
~𝑁𝑜𝑟𝑚𝑎𝑙(ℎ𝛽𝑊𝑗

, 𝜎𝛽𝑊𝑗

2 ).     (11) 576 

For population-level effects we used the same six explanatory variables (surface water 577 

change, GDP growth rates, changes in temperature and precipitation changes, protected area 578 

coverage and governance). γs,i accounts for spatial autocorrelation within each species and is 579 

drawn from an intrinsic Gaussian CAR prior distribution with variance 𝜎𝛾𝑠
2 , as in equation 580 

(4). 581 

As non-informative prior distributions, we used a Gamma distribution with mean of 1 and 582 

variance of 100 for σν
2, δ2, σμ

2, 𝜎𝛽𝑊𝑗

2  and 𝜎𝛾𝑠
2 , a uniform distribution on the interval [0, 1] for 583 

λ, normal distributions with mean of 0 and variance of 100 for α, βBk, and ℎ𝛽𝑊𝑗. Each 584 

MCMC algorithm was run with three chains with different initial values for 10,000 iterations 585 

with the first 5,000 discarded as burn-in and the remainder thinned to one in every two 586 

iterations to save storage space. Model convergence was checked with R-hat values. Due to 587 

differences in the definition of species between the two sources used34,55, we combined two 588 

separate species defined in the BirdLife Checklist34 into one in four cases for this species-589 

level analysis: Kentish plover Charadrius alexandrinus and snowy plover C. nivosus, 590 

common snipe Gallinago gallinago and Wilson's snipe G. delicata, European herring gull 591 

Larus argentatus and Arctic herring gull L. smithsonianus, and common moorhen Gallinula 592 

chloropus and common gallinule G. galeata. 593 

 594 

Data Availability 595 
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The waterbird count data used in this study are collated and managed by Wetlands 596 

International and the National Audubon Society, and available on request. All the data on 597 

explanatory variables are freely available as specified in Extended Data Table 1. 598 

 599 

Code Availability 600 

All the R and WinBUGS codes used for the analyses are available from the corresponding 601 

author upon request. 602 

 603 

References 604 

29 Delany, S., Guidance on Waterbird Monitoring Methodology: Field Protocol for 605 

Waterbird Counting. (Wetlands International, Wageningen, 2010). 606 

30 Dunn, E. H. et al., Enhancing the scientific value of the Christmas Bird Count. The Auk 607 

122, 338-346 (2005). 608 

31 van Roomen, M., van Winden, E., and van Turnhout, C., Analyzing Population Trends at 609 

the Flyway Level for Bird Populations Covered by the African Eurasian Waterbird 610 

Agreement: Details of a Methodology. (SOVON Dutch Centre for Field Ornithology, 611 

Nijmegen, 2011). 612 

32 Kaufmann, D., Kraay, A., and Mastruzzi, M., The Worldwide Governance Indicators: 613 

Methodology and Analytical Issues (September 2010). (World Bank Policy Research 614 

Working Paper No. 5430. Available at: https://ssrn.com/abstract=1682130, 2010). 615 

33 Hsu, A. et al., 2016 Environmental Performance Index. (Yale University. Available at: 616 

www.epi.yale.edu., New Haven, CT, 2016). 617 



33 

 

34 BirdLife International, The BirdLife Checklist of the Birds of the World: Version 7. 618 

(Available at: 619 

http://www.birdlife.org/datazone/userfiles/file/Species/Taxonomy/BirdLife_Checklist_V620 

ersion_70.zip, 2014). 621 

35 BirdLife International and NatureServe, Bird Species Distribution Maps of the World. 622 

(BirdLife International, Cambridge and NatureServe, Arlington, 2014). 623 

36 Gill, F. and Donsker, D. eds., IOC World Bird List (v 5.1). (Available at: 624 

http://www.worldbirdnames.org/, 2015). 625 

37 Amano, T., Okamura, H., Carrizo, S. F., and Sutherland, W. J., Hierarchical models for 626 

smoothed population indices: The importance of considering variations in trends of count 627 

data among sites. Ecol. Indic. 13, 243-252 (2012). 628 

38 Amano, T., Székely, T., Koyama, K., Amano, H., and Sutherland, W. J., A framework for 629 

monitoring the status of populations: An example from wader populations in the East 630 

Asian-Australasian flyway. Biol. Conserv. 143, 2238-2247 (2010). 631 

39 van Roomen, M. et al., Waterbird and Site Monitoring Along the Atlantic Coast of 632 

Africa: Strategy and Manual. (BirdLife International, Cambridge, Common Wadden Sea 633 

Secretariat, Wilhelmshaven and Wetlands International, Wageningen, 2014). 634 

40 Link, W. A. and Sauer, J. R., Seasonal components of avian population change: joint 635 

analysis of two large-scale monitoring programs. Ecology 88, 49-55 (2007). 636 

41 Lunn, D. J., Thomas, A., Best, N., and Spiegelhalter, D., WinBUGS - a Bayesian 637 

modelling framework: concepts, structure, and extensibility. Stat. Comput. 10, 325-337 638 

(2000). 639 

42 Sturtz, S., Ligges, U., and Gelman, A., R2WinBUGS: a package for running WinBUGS 640 

from R. J. Stat. Softw. 12, 1-16 (2005). 641 



34 

 

43 R Core Team, R: A Language and Environment for Statistical Computing. (R Foundation 642 

for Statistical Computing, Vienna, Available at: http://www.R-project.org/, 2016). 643 

44 Link, W. A., Sauer, J. R., and Niven, D. K., A hierarchical model for regional analysis of 644 

population change using Christmas Bird Count data, with application to the American 645 

Black Duck. Condor 108, 13-24 (2006). 646 

45 Gelman, A., Carlin, J., Stern, H., and Rubin, D., Bayesian Data Analysis, 2nd Edition. 647 

(Chapman & Hall / CRC, Boca Raton, FL, 2003). 648 

46 Pearce-Higgins, J. W. et al., Geographical variation in species' population responses to 649 

changes in temperature and precipitation. P. Roy. Soc. Lond. B: Bio. 282, 20151561 650 

(2015). 651 

47 Bare, M., Kauffman, C., and Miller, D. C., Assessing the impact of international 652 

conservation aid on deforestation in sub-Saharan Africa. Environ. Res. Lett. 10, 125010 653 

(2015). 654 

48 Thomas, A., Best, N., Lunn, D., Arnold, R., and Spiegelhalter, D., GeoBUGS User 655 

Manual. (Available at: http://www.mrc-bsu.cam.ac.uk/software/bugs/, 2004). 656 

49 van de Pol, M. and Wright, J., A simple method for distinguishing within- versus 657 

between-subject effects using mixed models. Anim. Behav. 77, 753-758 (2009). 658 

50 de Villemereuil, P., Wells, J., Edwards, R., and Blomberg, S., Bayesian models for 659 

comparative analysis integrating phylogenetic uncertainty. BMC Evol. Biol. 12, 102 660 

(2012). 661 

51 Abadi, F. et al., Importance of accounting for phylogenetic dependence in multi-species 662 

mark-recapture studies. Ecol. Model. 273, 236-241 (2014). 663 

52 Pagel, M., Inferring the historical patterns of biological evolution. Nature 401, 877-884 664 

(1999). 665 



35 

 

53 Freckleton, R. P., Harvey, P. H., and Pagel, M., Phylogenetic analysis and comparative 666 

data: A test and review of evidence. Am. Nat. 160, 712-726 (2002). 667 

54 Donoghue, M. J. and Ackerly, D. D., Phylogenetic uncertainties and sensitivity analyses 668 

in comparative biology. Philos. T. Roy. Soc. B 351, 1241-1249 (1996). 669 

55 Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., and Mooers, A. O., The global 670 

diversity of birds in space and time. Nature 491, 444-448 (2012). 671 

56 Grossman, G. M. and Krueger, A. B., Economic growth and the environment. Q. J. Econ. 672 

110, 353-377 (1995). 673 

57 Cardillo, M. et al., Human population density and extinction risk in the world's 674 

carnivores. PLOS Biol. 2, 909-914 (2004). 675 

58 McKee, J., Chambers, E., and Guseman, J., Human population density and growth 676 

validated as extinction threats to mammal and bird species. Hum. Ecol. 41, 773-778 677 

(2013). 678 

59 Center for International Earth Science Information Network - CIESIN - Columbia 679 

University and Centro Internacional de Agricultura Tropical - CIAT, Gridded Population 680 

of the World, Version 3 (GPWv3): Population Density Grid. (NASA Socioeconomic Data 681 

and Applications Center (SEDAC). Available at: http://dx.doi.org/10.7927/H4XK8CG2, 682 

Palisades, NY, 2005). 683 

60 Green, R. E., Cornell, S. J., Scharlemann, J. P. W., and Balmford, A., Farming and the 684 

fate of wild nature. Science 307, 550-555 (2005). 685 

61 Friedl, M. A. et al., MODIS Collection 5 global land cover: Algorithm refinements and 686 

characterization of new datasets. Remote Sens. Environ. 114, 168-182 (2010). 687 

62 Stephens, P. A. et al., Consistent response of bird populations to climate change on two 688 

continents. Science 352, 84-87 (2016). 689 



36 

 

63 Harris, I., Jones, P. D., Osborn, T. J., and Lister, D. H., Updated high-resolution grids of 690 

monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623-642 691 

(2014). 692 

64 Kleijn, D., Cherkaoui, I., Goedhart, P. W., van der Hout, J., and Lammertsma, D., 693 

Waterbirds increase more rapidly in Ramsar-designated wetlands than in unprotected 694 

wetlands. J. App. Ecol. 51, 289-298 (2014). 695 

65 Pavón-Jordán, D. et al., Climate-driven changes in winter abundance of a migratory 696 

waterbird in relation to EU protected areas. Divers. Distrib. 21, 571-582 (2015). 697 

66 UNEP-WCMC and IUCN (2015), Protected Planet: The World Database on Protected 698 

Areas (WDPA), June 2015, Cambridge, UK: UNEP-WCMC and IUCN. Available at: 699 

www.protectedplanet.net. 700 

67 Mace, G. M. et al., Quantification of extinction risk: IUCN's system for classifying 701 

threatened species. Conserv. Biol. 22, 1424-1442 (2008). 702 

68 Sanderson, F. J., Donald, P. F., Pain, D. J., Burfield, I. J., and van Bommel, F. P. J., 703 

Long-term population declines in Afro-Palearctiv migrant birds. Biol. Conserv. 131, 93-704 

105 (2006). 705 

69 Robbins, C. S., Sauer, J. R., Greenberg, R. S., and Droege, S., Population declines in 706 

North American birds that migrate to the neotropics. P. Natl. Acad. Sci. USA. 86, 7658-707 

7662 (1989). 708 

70 Pocock, M. J. O., Can traits predict species' vulnerability? A test with farmland 709 

passerines in two continents. P. Roy. Soc. Lond. B: Bio. 278, 1532-1538 (2011). 710 

71 Owens, I. P. F. and Bennett, P. M., Ecological basis of extinction risk in birds: habitat 711 

loss versus human persecution and introduced predators. P. Natl. Acad. Sci. USA. 97, 712 

12144-12148 (2000). 713 



37 

 

72 Wilman, H. et al., EltonTraits 1.0: Species-level foraging attributes of the world's birds 714 

and mammals. Ecology 95, 2027-2027 (2014). 715 

73 LeBaron, G. S., The 115th Christmas Bird Count. (National Audubon Society, New 716 

York. Available at: https://www.audubon.org/news/the-115th-christmas-bird-count-0, 717 

2015). 718 

 719 



38 

 

Extended Data Table 1. Hypotheses and explanatory variables tested for explaining the 

patterns in waterbird abundance changes over space and species. 

 

* http://data.worldbank.org/indicator/NY.GDP.PCAP.KD 

† http://data.worldbank.org/indicator/NY.GDP.MKTP.KD.ZG 

‡ http://data.worldbank.org/data-catalog/worldwide-governance-indicators 

§ http://datazone.birdlife.org/home
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Extended Data Table 2. Correlation matrix (Spearman’s rank correlation) of nine 

potential predictors of waterbird abundance changes (n=2,079). Gross domestic product 

(GDP) per capita is log10-transformed values. Strong correlation (|r| > 0.7) are shown in bold. 
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Extended Data Fig. 1. The distribution of all the 25,769 survey sites used in the analyses. Sites for the International Waterbird Census are 

shown in yellow (African-Eurasian Waterbird Census), pink (Asian Waterbird Census) and green (Neotropical Waterbird Census) and those for 

the Christmas Bird Count are in cyan.
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Extended Data Fig. 2. Global distribution of mean annual changes in abundance across 

(a) 373 migratory and (b) 88 non-migratory waterbird species (i.e., community-level 

changes). Migratory status of each species is from the BirdLife Data Zone (see Methods for 

more detail).



42 

 

 

Extended Data Fig. 3. Relationships between community-level changes in abundance 

and (a) the proportion of sites covered by protected areas and (b) surface water change 

(n=2,079). Regression lines based on the estimated coefficients in Fig. 3a are also shown; 

values and regression lines for species in areas with more and less effective governance are 

shown in blue and red, respectively.
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Extended Data Fig. 4. Effects of five hypothesised predictors (see Extended Data Table 1 

for more detail) on population-level changes in abundance. In each panel, the medians and 

95% credible intervals of the estimated coefficients for 293 species are shown in order of 

decreasing positive effect size from the left (those with 95% credible intervals not 

overlapping with zero shown in red). The numbers of species with significant positive and 

negative coefficients are also shown, with the number of non-migratory species in 

parentheses.
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Extended Data Fig. 5. Sensitivity of results to the correlation between governance and 

gross domestic product (GDP) per capita and designation years of protected areas. 

Estimated coefficients in the multivariate analysis of (a) community-level (n=2,079) and (b) 

species-level changes in abundance (based on 293 species; see Supplementary Data S2 for the 

number of grid cells in each species), where governance was replaced with linear and 

quadratic terms of GDP per capita, and (c) community-level (n=2,079) and (d) species-level 

changes in abundance (based on 293 species; see Supplementary Data S2 for the number of 

grid cells in each species), where only protected areas known to have been designated before 

1990 (the first survey year in our dataset) were used in the most conservative approach. 

Posterior medians with 95% and 50% (thick lines) credible intervals are shown. Coefficients 

with 95% credible intervals not overlapping with zero are shown in red.
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Extended Data Fig. 6. Sensitivity of the results to the inclusion of seabird species. (a) 

Global distribution of mean annual changes in abundance across 447 waterbird species 

excluding the 14 seabird species between 1990 and 2013. Estimated coefficients in the 

multivariate analysis of (b) community-level (n=2,079) and (c) species-level changes in 

abundance, where the 14 seabird species were excluded (i.e., based on 447 species; see 

Supplementary Data S2 for the number of grid cells in each species). Posterior medians with 

95% and 50% (thick lines) credible intervals are shown. Coefficients with 95% credible 

intervals not overlapping with zero are shown in red.
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Extended Data Fig. 7. Sensitivity of the results to the choice of Christmas Bird Count 

(CBC) survey sites for the analyses. (a) Global distribution of mean annual changes in 

abundance across 461 waterbird species between 1990 and 2013 after excluding 41 CBC grid 

cells with neither landscape-scale wetland areas nor local-scale surface water occurrences 

(within 1km of all the survey sites included). Estimated coefficients in the multivariate 

analysis of (b) community-level (n=2,038) and (c) species-level changes in abundance (based 

on 293 species), where 41 CBC grid cells with neither landscape-scale wetland areas nor 

local-scale surface water occurrences (within 1km of all the survey sites) were excluded. (d) 

Global distribution of mean annual changes in abundance across 461 waterbird species 

between 1990 and 2013 after excluding eight CBC grid cells where the proportion of urban 

areas was over 0.3. Estimated coefficients in the multivariate analysis of (e) community-level 

(n=2,071) and (f) species-level changes in abundance (based on 293 species), where eight 

CBC grid cells with a proportion of urban areas of over 0.3 were excluded. Posterior medians 

with 95% and 50% (thick lines) credible intervals are shown. Coefficients with 95% credible 

intervals not overlapping with zero are shown in red.



47 

 

 

Extended Data Fig. 8. Relationships between the proportion of sites covered by 

protected areas and (a) governance and (b) gross domestic product (GDP) per capita. 

Colors indicate regions: blue: North America, green: South America, navy: Europe, orange: 

Africa, red: Western/Central Asia, yellow: South/Southeast Asia, cyan: East Asia and Russia, 

and dark green: Oceania. 


