121 research outputs found
Magnetotransport in Two-Dimensional Electron Systems with Spin-Orbit Interaction
We present magnetotransport calculations for homogeneous two-dimensional
electron systems including the Rashba spin-orbit interaction, which mixes the
spin-eigenstates and leads to a modified fan-chart with crossing Landau levels.
The quantum mechanical Kubo formula is evaluated by taking into account
spin-conserving scatterers in an extension of the self-consistent Born
approximation that considers the spin degree of freedom. The calculated
conductivity exhibits besides the well-known beating in the Shubnikov-de Haas
(SdH) oscillations a modulation which is due to a suppression of scattering
away from the crossing points of Landau levels and does not show up in the
density of states. This modulation, surviving even at elevated temperatures
when the SdH oscillations are damped out, could serve to identify spin-orbit
coupling in magnetotransport experiments. Our magnetotransport calculations are
extended also to lateral superlattices and predictions are made with respect to
1/B periodic oscillations in dependence on carrier density and strength of the
spin-orbit coupling.Comment: 8 pages including 8 figures; submitted to PR
An improved method for calculating control rod reactivity worths in fast sodium cooled reactor cores
Inverse flux quantum periodicity of magnetoresistance oscillations in two-dimensional short-period surface superlattices
Transport properties of the two-dimensional electron gas (2DEG) are
considered in the presence of a perpendicular magnetic field and of a {\it
weak} two-dimensional (2D) periodic potential modulation in the 2DEG plane. The
symmetry of the latter is rectangular or hexagonal. The well-known solution of
the corresponding tight-binding equation shows that each Landau level splits
into several subbands when a rational number of flux quanta pierces the
unit cell and that the corresponding gaps are exponentially small. Assuming the
latter are closed due to disorder gives analytical wave functions and
simplifies considerably the evaluation of the magnetoresistivity tensor
. The relative phase of the oscillations in and
depends on the modulation periods involved. For a 2D modulation
with a {\bf short} period nm, in addition to the Weiss oscillations
the collisional contribution to the conductivity and consequently the tensor
show {\it prominent peaks when one flux quantum passes
through an integral number of unit cells} in good agreement with recent
experiments. For periods nm long used in early experiments, these
peaks occur at fields 10-25 times smaller than those of the Weiss oscillations
and are not resolved
First Evidence of Immunomodulation in Bivalves under Seawater Acidification and Increased Temperature
Water acidification, temperature increases and changes in seawater salinity are predicted to occur in the near future. In such a global climate change (GCC) scenario, there is growing concern for the health status of both wild and farmed organisms. Bivalve molluscs, an important component of coastal marine ecosystems, are at risk. At the immunological level, the ability of an organism to maintain its immunosurveillance unaltered under adverse environmental conditions may enhance its survival capability. To our knowledge, only a few studies have investigated the effects of changing environmental parameters (as predicted in a GCC scenario) on the immune responses of bivalves. In the present study, the effects of both decreased pH values and increased temperature on the important immune parameters of two bivalve species were evaluated for the first time. The clam Chamelea gallina and the mussel Mytilus galloprovincialis, widespread along the coast of the Northwestern Adriatic Sea, were chosen as model organisms. Bivalves were exposed for 7 days to three pH values (8.1, 7.7 and 7.4) at two temperatures (22 and 28°C). Three independent experiments were carried out at salinities of 28, 34 and 40 PSU. The total haemocyte count, Neutral Red uptake, haemolymph lysozyme activity and total protein levels were measured. The results obtained demonstrated that tested experimental conditions affected significantly most of the immune parameters measured in bivalves, even if the variation pattern of haemocyte responses was not always linear. Between the two species, C. gallina appeared more vulnerable to changing pH and temperature than M. galloprovincialis. Overall, this study demonstrated that climate changes can strongly affect haemocyte functionality in bivalves. However, further studies are needed to clarify better the mechanisms of action of changing environmental parameters, both individually and in combination, on bivalve haemocytes
Helical spin-density wave in doped V2O3
Recent neutron scattering and nuclear magnetic resonance experiments have
revealed that the low temperature phase of doped V_{2-y}O_3 is an itinerant
antiferromagnet with a helical spin structure. We use a band structure
calculation as the point of departure to show that these experiments are in
agreement with mean field results for an Overhauser spin-density wave state.
The influences of a finite life-time and of dilute magnetic impurities are
discussed.Comment: 6 pages RevTex incl. 7 postscript figures, to be published by PR
Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis
Anthropogenic CO2 emissions are acidifying the world’s oceans. A growing body of evidence demonstrates that ocean acidification can impact survival, growth, development and physiology of marine invertebrates. Here, we tested the impact of long-term (up to 16 months) and trans-life-cycle (adult, embryo/larvae and juvenile) exposure to elevated pCO2 (1,200 μatm, compared to control 400 μatm) on the green sea urchin Strongylocentrotus droebachiensis. Female fecundity was decreased 4.5-fold when acclimated to elevated pCO2 for 4 months during reproductive conditioning, while no difference was observed in females acclimated for 16 months. Moreover, adult pre-exposure for 4 months to elevated pCO2 had a direct negative impact on subsequent larval settlement success. Five to nine times fewer offspring reached the juvenile stage in cultures using gametes collected from adults previously acclimated to high pCO2 for 4 months. However, no difference in larval survival was observed when adults were pre-exposed for 16 months to elevated pCO2. pCO2 had no direct negative impact on juvenile survival except when both larvae and juveniles were raised in elevated pCO2. These negative effects on settlement success and juvenile survival can be attributed to carry-over effects from adults to larvae and from larvae to juveniles. Our results support the contention that adult sea urchins can acclimate to moderately elevated pCO2 in a matter of a few months and that carry-over effects can exacerbate the negative impact of ocean acidification on larvae and juveniles
Ocean Acidification at High Latitudes: Potential Effects on Functioning of the Antarctic Bivalve Laternula elliptica
Ocean acidification is a well recognised threat to marine ecosystems. High
latitude regions are predicted to be particularly affected due to cold waters
and naturally low carbonate saturation levels. This is of concern for organisms
utilising calcium carbonate (CaCO3) to generate shells or skeletons.
Studies of potential effects of future levels of pCO2 on high latitude
calcifiers are at present limited, and there is little understanding of their
potential to acclimate to these changes. We describe a laboratory experiment
to compare physiological and metabolic responses of a key benthic bivalve, Laternula
elliptica, at pCO2 levels of their natural environment
(430 µatm, pH 7.99; based on field measurements) with those predicted
for 2100 (735 µatm, pH 7.78) and glacial levels (187 µatm, pH
8.32). Adult L. elliptica basal metabolism (oxygen consumption
rates) and heat shock protein HSP70 gene expression levels
increased in response both to lowering and elevation of pH. Expression of
chitin synthase (CHS), a key enzyme involved in synthesis
of bivalve shells, was significantly up-regulated in individuals at pH 7.78,
indicating L. elliptica were working harder to calcify in
seawater undersaturated in aragonite (ΩAr = 0.71),
the CaCO3 polymorph of which their shells are comprised. The different
response variables were influenced by pH in differing ways, highlighting the
importance of assessing a variety of factors to determine the likely impact
of pH change. In combination, the results indicate a negative effect of ocean
acidification on whole-organism functioning of L. elliptica
over relatively short terms (weeks-months) that may be energetically difficult
to maintain over longer time periods. Importantly, however, the observed changes
in L. elliptica CHS gene expression provides evidence for
biological control over the shell formation process, which may enable some
degree of adaptation or acclimation to future ocean acidification scenarios
Effects of elevated seawater pCO2 on gene expression patterns in the gills of the green crab, Carcinus maenas
Background: The green crab Carcinus maenas is known for its high acclimation potential to varying environmental
abiotic conditions. A high ability for ion and acid-base regulation is mainly based on an efficient regulation
apparatus located in gill epithelia. However, at present it is neither known which ion transport proteins play a key
role in the acid-base compensation response nor how gill epithelia respond to elevated seawater pCO2 as
predicted for the future. In order to promote our understanding of the responses of green crab acid-base
regulatory epithelia to high pCO2, Baltic Sea green crabs were exposed to a pCO2 of 400 Pa. Gills were screened
for differentially expressed gene transcripts using a 4,462-feature microarray and quantitative real-time PCR.
Results: Crabs responded mainly through fine scale adjustment of gene expression to elevated pCO2. However, 2%
of all investigated transcripts were significantly regulated 1.3 to 2.2-fold upon one-week exposure to CO2 stress.
Most of the genes known to code for proteins involved in osmo- and acid-base regulation, as well as cellular stress
response, were were not impacted by elevated pCO2. However, after one week of exposure, significant changes
were detected in a calcium-activated chloride channel, a hyperpolarization activated nucleotide-gated potassium
channel, a tetraspanin, and an integrin. Furthermore, a putative syntaxin-binding protein, a protein of the
transmembrane 9 superfamily, and a Cl-/HCO3
- exchanger of the SLC 4 family were differentially regulated. These
genes were also affected in a previously published hypoosmotic acclimation response study.
Conclusions: The moderate, but specific response of C. maenas gill gene expression indicates that (1) seawater
acidification does not act as a strong stressor on the cellular level in gill epithelia; (2) the response to hypercapnia
is to some degree comparable to a hypoosmotic acclimation response; (3) the specialization of each of the
posterior gill arches might go beyond what has been demonstrated up to date; and (4) a re-configuration of gill
epithelia might occur in response to hypercapnia
Ocean acidification induces multi-generational decline in copepod naupliar production with possible conflict for reproductive resource allocation
Climate change, including ocean acidification (OA), presents fundamental challenges to marine biodiversity and sustained ecosystem health. We determined reproductive response (measured as naupliar production), cuticle composition and stage specific growth of the copepod Tisbe battagliai over three generations at four pH conditions (pH 7.67, 7.82, 7.95, and 8.06). Naupliar production increased significantly at pH 7.95 compared with pH 8.06 followed by a decline at pH 7.82. Naupliar production at pH 7.67 was higher than pH 7.82. We attribute the increase at pH 7.95 to an initial stress response which was succeeded by a hormesis-like response at pH 7.67. A multi-generational modelling approach predicted a gradual decline in naupliar production over the next 100 years (equivalent to approximately 2430 generations). There was a significant growth reduction (mean length integrated across developmental stage) relative to controls. There was a significant increase in the proportion of carbon relative to oxygen within the cuticle as seawater pH decreased. Changes in growth, cuticle composition and naupliar production strongly suggest that copepods subjected to OA-induced stress preferentially reallocate resources towards maintaining reproductive output at the expense of somatic growth and cuticle composition. These responses may drive shifts in life history strategies that favour smaller brood sizes, females and perhaps later maturing females, with the potential to profoundly destabilise marine trophodynamics
Monte Carlo calculations with nuclear point data based on JEF-2.2 and JEFF-3.1 for the VENUS-7 critical benchmarks
Currently, the VENUS-7 series of critical experiments is evaluated within an OECD/NEA benchmark activity for the validation of nuclear data and codes for MOX fuel. Measurements are available for various cold square lattice cores, consisting of an inner MOX and an outer UO2 zone, moderated and reflected by light water. In addition to the multiplication factors, reactivity changes for substitution or removal of a small number of fuel pins, as well as radial pin-wise fission rate distributions are known from the experiments. Results obtained with the MCNP code, using point-wise cross section libraries processed from the JEF-2.2 and JEFF-3.1 evaluated data, are presented. Concerning the reactivity differences and fission rate distributions, satisfactory agreement between the calculated and measured results is obtained. The absolute values of the multiplication constants are underestimated with the JEF-2.2 data by approximately 700 pcm, which is consistent with the results of earlier calculations for the KRITZ-2 LWR lattice UO2 cores. When using the new JEFF-3.1 data available from the NEA data bank, the calculated multiplication constants increase by a statistically significant amount of about 200 pcm. The results supplement a series of benchmark calculations with the Monte Carlo method on critical experiments performed for the validation of evaluated nuclear point data libraries
- …