34,618 research outputs found
Distribution theory for Schr\"odinger's integral equation
Much of the literature on point interactions in quantum mechanics has focused
on the differential form of Schr\"odinger's equation. This paper, in contrast,
investigates the integral form of Schr\"odinger's equation. While both forms
are known to be equivalent for smooth potentials, this is not true for
distributional potentials. Here, we assume that the potential is given by a
distribution defined on the space of discontinuous test functions.
First, by using Schr\"odinger's integral equation, we confirm a seminal
result by Kurasov, which was originally obtained in the context of
Schr\"odinger's differential equation. This hints at a possible deeper
connection between both forms of the equation. We also sketch a generalisation
of Kurasov's result to hypersurfaces.
Second, we derive a new closed-form solution to Schr\"odinger's integral
equation with a delta prime potential. This potential has attracted
considerable attention, including some controversy. Interestingly, the derived
propagator satisfies boundary conditions that were previously derived using
Schr\"odinger's differential equation.
Third, we derive boundary conditions for `super-singular' potentials given by
higher-order derivatives of the delta potential. These boundary conditions
cannot be incorporated into the normal framework of self-adjoint extensions. We
show that the boundary conditions depend on the energy of the solution, and
that probability is conserved.
This paper thereby confirms several seminal results and derives some new
ones. In sum, it shows that Schr\"odinger's integral equation is viable tool
for studying singular interactions in quantum mechanics.Comment: 23 page
RSFQ devices with selective dissipation for quantum information processing
We study the possibility to use frequency dependent damping in RSFQ circuits
as means to reduce dissipation and consequent decoherence in RSFQ/qubit
circuits. We show that stable RSFQ operation can be achieved by shunting the
Josephson junctions with an circuit instead of a plain resistor. We derive
criteria for the stability of such an arrangement, and discuss the effect on
decoherence and the optimisation issues. We also design a simple flux generator
aimed at manipulating flux qubits
Parameter Estimation from Improved Measurements of the Cosmic Microwave Background from QUaD
We evaluate the contribution of cosmic microwave background (CMB) polarization spectra to cosmological parameter constraints. We produce cosmological parameters using high-quality CMB polarization data from the ground-based QUaD experiment and demonstrate for the majority of parameters that there is significant improvement on the constraints obtained from satellite CMB polarization data. We split a multi-experiment CMB data set into temperature and polarization subsets and show that the best-fit confidence regions for the ΛCDM six-parameter cosmological model are consistent with each other, and that polarization data reduces the confidence regions on all parameters. We provide the best limits on parameters from QUaD EE/BB polarization data and we find best-fit parameters from the multi-experiment CMB data set using the optimal pivot scale of k_p = 0.013 Mpc^(–1) to be {h^2Ω_c, h^2Ω_b, H_0, A_s, n_s, τ} = {0.113, 0.0224, 70.6, 2.29 × 10^(–9), 0.960, 0.086}
A Twin Study of Early-Childhood Asthma in Puerto Ricans
Background:The relative contributions of genetics and environment to asthma in Hispanics or to asthma in children younger than 3 years are not well understood.Objective:To examine the relative contributions of genetics and environment to early-childhood asthma by performing a longitudinal twin study of asthma in Puerto Rican children ≤3 years old.Methods:678 twin infants from the Puerto Rico Neo-Natal Twin Registry were assessed for asthma at age 1 year, with follow-up data obtained for 624 twins at age 3 years. Zygosity was determined by DNA microsatellite profiling. Structural equation modeling was performed for three phenotypes at ages 1 and 3 years: physician-diagnosed asthma, asthma medication use in the past year, and ≥1 hospitalization for asthma in the past year. Models were additionally adjusted for early-life environmental tobacco smoke exposure, sex, and age.Results:The prevalences of physician-diagnosed asthma, asthma medication use, and hospitalization for asthma were 11.6%, 10.8%, 4.9% at age 1 year, and 34.1%, 40.1%, and 8.5% at 3 years, respectively. Shared environmental effects contributed to the majority of variance in susceptibility to physician-diagnosed asthma and asthma medication use in the first year of life (84%-86%), while genetic effects drove variance in all phenotypes (45%-65%) at age 3 years. Early-life environmental tobacco smoke, sex, and age contributed to variance in susceptibility.Conclusion:Our longitudinal study in Puerto Rican twins demonstrates a changing contribution of shared environmental effects to liability for physician-diagnosed asthma and asthma medication use between ages 1 and 3 years. Early-life environmental tobacco smoke reduction could markedly reduce asthma morbidity in young Puerto Rican children. © 2013 Bunyavanich et al
Radiation hardness of small-pitch 3D pixel sensors up to HL-LHC fluences
A new generation of 3D silicon pixel detectors with a small pixel size of
5050 and 25100 m is being developed for the HL-LHC
tracker upgrades. The radiation hardness of such detectors was studied in beam
tests after irradiation to HL-LHC fluences up to
n/cm. At this fluence, an operation voltage of only 100 V
is needed to achieve 97% hit efficiency, with a power dissipation of 13
mW/cm at -25C, considerably lower than for previous 3D sensor
generations and planar sensors.Comment: 5 pages, 2 figures, Proceedings of TIPP 2017, Beijing (International
Conference on The Technology and Instrumentation in Particle Physics 2017
SIMS chemical analysis of extended impacts on the leading and trailing edges of LDEF experiment AO187-2
Numerous 'extended impacts' found in both leading and trailing edge capture cells were successfully analyzed for the chemical composition of projectile residues by secondary ion mass spectrometry (SIMS). Most data were obtained from the trailing edge cells where 45 of 58 impacts were classified as 'probably natural' and the remainder as 'possibly man-made debris.' This is in striking contrast to leading edge cells where 9 of 11 impacts so far measured are definitely classified as orbital debris. Although all the leading edge cells had lost their plastic entrance foils during flight, the rate of foil failure was similar to that of the trailing edge cells, 10 percent of which were recovered intact. Ultraviolet embrittlement is suspected as the major cause of failure on both leading and trailing edges. The major impediment to the accurate determination of projectile chemistry is the fractionation of volatile and refractory elements in the hypervelocity impact and redeposition processes. This effect had been noted in a simulation experiment but is more pronounced in the LDEF capture cells, probably due to the higher average velocities of the space impacts. Surface contamination of the pure Ge surfaces with a substance rich in Si, but also containing Mg and Al, provides an additional problem for the accurate determination of impactor chemistry. The effect is variable, being much larger on surfaces that were exposed to space than in those cells that remained intact. Future work will concentrate on the analyses of more leading edge impacts and the development of new SIMS techniques for the measurement of elemental abundances in extended impacts
Automated identification of Fos expression
The concentration of Fos, a protein encoded by the immediate-early gene c-fos, provides a measure of synaptic activity that may not parallel the electrical activity of neurons. Such a measure is important for the difficult problem of identifying dynamic properties of neuronal circuitries activated by a variety of stimuli and behaviours. We employ two-stage statistical pattern recognition to identify cellular nuclei that express Fos in two-dimensional sections of rat forebrain after administration of antipsychotic drugs. In stage one, we distinguish dark-stained candidate nuclei from image background by a thresholding algorithm and record size and shape measurements of these objects. In stage two, we compare performance of linear and quadratic discriminants, nearest-neighbour and artificial neural network classifiers that employ functions of these measurements to label candidate objects as either Fos nuclei, two touching Fos nuclei or irrelevant background material. New images of neighbouring brain tissue serve as test sets to assess generalizability of the best derived classification rule, as determined by lowest cross-validation misclassification rate. Three experts, two internal and one external, compare manual and automated results for accuracy assessment. Analyses of a subset of images on two separate occasions provide quantitative measures of inter- and intra-expert consistency. We conclude that our automated procedure yields results that compare favourably with those of the experts and thus has potential to remove much of the tedium, subjectivity and irreproducibility of current Fos identification methods in digital microscopy
Formation of ultracold LiCs molecules
We present the first observation of ultracold LiCs molecules. The molecules
are formed in a two-species magneto-optical trap and detected by two-photon
ionization and time-of-flight mass spectrometry. The production rate
coefficient is found to be in the range 10^{-18}\unit{cm^3s^{-1}} to
10^{-16}\unit{cm^3s^{-1}}, at least an order of magnitude smaller than for
other heteronuclear diatomic molecules directly formed in a magneto-optical
trap.Comment: 8 pages, 2 figure
Recommended from our members
Local difference measures between complex networks for dynamical system model evaluation
- …