1,260 research outputs found
Penn Macy initiative to advance academic nursing practice
Academic nursing practice holds great promise for the future of the nursing discipline. The successful and intentional integration of the tripartite mission of research, education, and clinical practice can facilitate both the evolution of the science and implementation of evidence-based practice, while imbuing practitioners in the making with the world of the possible. Although many schools of nursing have been involved in some aspects of academic practice, the lack of common focus and direction has hampered concerted movement. The Penn Macy Initiative was conceived as a vehicle to help build and coalesce the critical mass needed to bridge this gap. The Penn Macy Initiative, its implementation and experience in the first 3 years, and how its alumni fellows, an annual conference, and Web-based consultation will continue to provide impetus, leadership, and resources for academic nursing practice in the years to come are described
Global partnerships to strengthen the evidence base for nursing
There is a growing emphasis on building the evidence base as governments, health systems, practitioners, and consumers, nationally and globally, search for ways to improve health care outcomes and enhance the efficiency and effectiveness of health services.
Nurses and midwives constitute the largest group of health service providers in the majority of health systems around the globe.
The WHO Global Advisory Group on Nursing and Midwifery recommended that WHO should form strategic alliances with partners to identify uniform core indicators and build a solid body of evidence to inform national health policies, particularly in the area of cost-effective nursing and midwifery services such as HIV/AIDS, tuberculosis, and malaria.
Creating an international digital library has the potential to make a significant impact on global health
Impact of an interatrial shunt device on survival and heart failure hospitalization in patients with preserved ejection fraction
Aims:
Impaired left ventricular diastolic function leading to elevated left atrial pressures, particularly during exertion, is a key driver of symptoms and outcomes in heart failure with preserved ejection fraction (HFpEF). Insertion of an interatrial shunt device (IASD) to reduce left atrial pressure in HFpEF has been shown to be associated with short‐term haemodynamic and symptomatic benefit. We aimed to investigate the potential effects of IASD placement on HFpEF survival and heart failure hospitalization (HFH).
Methods and results:
Heart failure with preserved ejection fraction patients participating in the Reduce Elevated Left Atrial Pressure in Patients with Heart Failure study (Corvia Medical) of an IASD were followed for a median duration of 739 days. The theoretical impact of IASD implantation on HFpEF mortality was investigated by comparing the observed survival of the study cohort with the survival predicted from baseline data using the Meta‐analysis Global Group in Chronic Heart Failure heart failure risk survival score. Baseline and post‐IASD implant parameters associated with HFH were also investigated. Based upon the individual baseline demographic and cardiovascular profile of the study cohort, the Meta‐analysis Global Group in Chronic Heart Failure score‐predicted mortality was 10.2/100 pt years. The observed mortality rate of the IASD‐treated cohort was 3.4/100 pt years, representing a 33% lower rate (P = 0.02). By Kaplan–Meier analysis, the observed survival in IASD patients was greater than predicted (P = 0.014). Baseline parameters were not predictive of future HFH events; however, poorer exercise tolerance and a higher workload‐corrected exercise pulmonary capillary wedge pressure at the 6 months post‐IASD study were associated with HFH.
Conclusions:
The current study suggests IASD implantation may be associated with a reduction in mortality in HFpEF. Large‐scale ongoing randomized studies are required to confirm the potential benefit of this therapy
Access to quality care: Links between evidence, nursing language, and informatics
Despite evidence on nursing’s contribution to the quality of care, much of what nurses “do” remains essentially invisible.
It is vital to recognize the need for a paradigm shift in nursing that utilizes new informatics tools required for optimum use of evidence related to the delivery of quality nursing care.
Embedding nursing language within informatics structures is essential to make the work of nurses visible, and articulate evidence about the quality and value of nursing in the care of patients, groups, and populations
The impact of new water vapor spectroscopy on satellite retrievals
Water vapor, arguably the most important trace gas constituent of Earth atmospheric physics, is also both a retrieval goal and a hindrance in the retrievals of other trace gases from nadir-measuring satellite spectrometers. This is because the atmospherically-attenuated solar spectrum in the visible and shortwave infrared is littered with water vapor bands. The recent plethora of water vapor spectroscopy databases in this spectral region has prompted us to study their utility in satellite retrievals. We consider water vapor spectroscopy compiled from four sources including new spectroscopy due to University College London and Imperial College London. Radiative transfer models of satellite measurements, in combination with accurate retrieval techniques, are quite sensitive to the accuracy and completeness of the water vapor spectroscopy. Notwithstanding the high degree of variability of a number of different factors in satellite measurements we show that retrievals are sensitive to database differences which suggests that our knowledge of water vapor spectroscopy is not as yet complete. In addition, new laboratory measurements indicate that the role of both the far-line wings of water vapor and the cumulative effect of many weak lines each have an important role to play in forming the so-called continuum
Recommended from our members
Staff Perspectives on Caring for the First Patients with COVID-19
A population of luminous accreting black holes with hidden mergers
Major galaxy mergers are thought to play an important part in fuelling the
growth of supermassive black holes. However, observational support for this
hypothesis is mixed, with some studies showing a correlation between merging
galaxies and luminous quasars and others showing no such association. Recent
observations have shown that a black hole is likely to become heavily obscured
behind merger-driven gas and dust, even in the early stages of the merger, when
the galaxies are well separated (5 to 40 kiloparsecs). Merger simulations
further suggest that such obscuration and black-hole accretion peaks in the
final merger stage, when the two galactic nuclei are closely separated (less
than 3 kiloparsecs). Resolving this final stage requires a combination of
high-spatial-resolution infrared imaging and high-sensitivity hard-X-ray
observations to detect highly obscured sources. However, large numbers of
obscured luminous accreting supermassive black holes have been recently
detected nearby (distances below 250 megaparsecs) in X-ray observations. Here
we report high-resolution infrared observations of hard-X-ray-selected black
holes and the discovery of obscured nuclear mergers, the parent populations of
supermassive-black-hole mergers. We find that obscured luminous black holes
(bolometric luminosity higher than 2x10^44 ergs per second) show a significant
(P<0.001) excess of late-stage nuclear mergers (17.6 per cent) compared to a
sample of inactive galaxies with matching stellar masses and star formation
rates (1.1 per cent), in agreement with theoretical predictions. Using
hydrodynamic simulations, we confirm that the excess of nuclear mergers is
indeed strongest for gas-rich major-merger hosts of obscured luminous black
holes in this final stage.Comment: To appear in the 8 November 2018 issue of Nature. This is the
authors' version of the wor
Recommended from our members
Remarks on Andrew Lang's World Trade Law After Neo-Liberalism
No abstract available
Deep-level defects in n-type GaAsBi alloys grown by molecular beam epitaxy at low temperature and their influence on optical properties
Deep-level defects in n-type GaAs1-x Bi x having 0 ≤ x ≤ 0.023 grown on GaAs by molecular beam epitaxy at substrate temperature of 378 °C have been injvestigated by deep level transient spectroscopy. The optical properties of the layers have been studied by contactless electroreflectance and photoluminescence. We find that incorporating Bi suppresses the formation of GaAs-like electron traps, thus reducing the total trap concentration in dilute GaAsBi layers by over two orders of magnitude compared to GaAs grown under the same conditions. In order to distinguish between Bi- and host-related traps and to identify their possible origin, we used the GaAsBi band gap diagram to correlate their activation energies in samples with different Bi contents. This approach was recently successfully applied for the identification of electron traps in n-type GaAs1-x N x and assumes that the activation energy of electron traps decreases with the Bi (or N)-related downward shift of the conduction band. On the basis of this diagram and under the support of recent theoretical calculations, at least two Bi-related traps were revealed and associated with Bi pair defects, i.e. (VGa+BiGa)(-/2-) and (AsGa+BiGa)(0/1-). In the present work it is shown that these defects also influence the photoluminescence properties of GaAsBi alloys
The statistics of natural hand movements.
Humans constantly use their hands to interact with the environment and they engage spontaneously in a wide variety of manual activities during everyday life. In contrast, laboratory-based studies of hand function have used a limited range of predefined tasks. The natural movements made by the hand during everyday life have thus received little attention. Here, we developed a portable recording device that can be worn by subjects to track movements of their right hand as they go about their daily routine outside of a laboratory setting. We analyse the kinematic data using various statistical methods. Principal component analysis of the joint angular velocities showed that the first two components were highly conserved across subjects, explained 60% of the variance and were qualitatively similar to those reported in previous studies of reach-to-grasp movements. To examine the independence of the digits, we developed a measure based on the degree to which the movements of each digit could be linearly predicted from the movements of the other four digits. Our independence measure was highly correlated with results from previous studies of the hand, including the estimated size of the digit representations in primary motor cortex and other laboratory measures of digit individuation. Specifically, the thumb was found to be the most independent of the digits and the index finger was the most independent of the fingers. These results support and extend laboratory-based studies of the human hand
- …
