628 research outputs found
Multi Agent Systems in Logistics: A Literature and State-of-the-art Review
Based on a literature survey, we aim to answer our main question: “How should we plan and execute logistics in supply chains that aim to meet today’s requirements, and how can we support such planning and execution using IT?†Today’s requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting today’s requirements in supply chain planning and execution.supply chain;MAS;multi agent systems
Multi Agent Systems in Logistics: A Literature and State-of-the-art Review
Based on a literature survey, we aim to answer our main question: “How should we plan and execute logistics in supply chains that aim to meet today’s requirements, and how can we support such planning and execution using IT?” Today’s requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting today’s requirements in supply chain planning and execution
Consistent irrelevant deformations of interacting conformal field theories
I show that under certain conditions it is possible to define consistent
irrelevant deformations of interacting conformal field theories. The
deformations are finite or have a unique running scale ("quasi-finite"). They
are made of an infinite number of lagrangian terms and a finite number of
independent parameters that renormalize coherently. The coefficients of the
irrelevant terms are determined imposing that the beta functions of the
dimensionless combinations of couplings vanish ("quasi-finiteness equations").
The expansion in powers of the energy is meaningful for energies much smaller
than an effective Planck mass. Multiple deformations can be considered also. I
study the general conditions to have non-trivial solutions. As an example, I
construct the Pauli deformation of the IR fixed point of massless non-Abelian
Yang-Mills theory with N_c colors and N_f <~ 11N_c/2 flavors and compute the
couplings of the term F^3 and the four-fermion vertices. Another interesting
application is the construction of finite chiral irrelevant deformations of N=2
and N=4 superconformal field theories. The results of this paper suggest that
power-counting non-renormalizable theories might play a role in the description
of fundamental physics.Comment: 23 pages, 5 figures; reference updated - JHE
Carnot-Caratheodory metric and gauge fluctuation in Noncommutative Geometry
Gauge fields have a natural metric interpretation in terms of horizontal
distance. The latest, also called Carnot-Caratheodory or subriemannian
distance, is by definition the length of the shortest horizontal path between
points, that is to say the shortest path whose tangent vector is everywhere
horizontal with respect to the gauge connection. In noncommutative geometry all
the metric information is encoded within the Dirac operator D. In the classical
case, i.e. commutative, Connes's distance formula allows to extract from D the
geodesic distance on a riemannian spin manifold. In the case of a gauge theory
with a gauge field A, the geometry of the associated U(n)-vector bundle is
described by the covariant Dirac operator D+A. What is the distance encoded
within this operator ? It was expected that the noncommutative geometry
distance d defined by a covariant Dirac operator was intimately linked to the
Carnot-Caratheodory distance dh defined by A. In this paper we precise this
link, showing that the equality of d and dh strongly depends on the holonomy of
the connection. Quite interestingly we exhibit an elementary example, based on
a 2 torus, in which the noncommutative distance has a very simple expression
and simultaneously avoids the main drawbacks of the riemannian metric (no
discontinuity of the derivative of the distance function at the cut-locus) and
of the subriemannian one (memory of the structure of the fiber).Comment: published version with additional figures to make the proof more
readable. Typos corrected in this ultimate versio
Denoising using local projective subspace methods
In this paper we present denoising algorithms for enhancing noisy signals based on Local ICA (LICA), Delayed AMUSE (dAMUSE)
and Kernel PCA (KPCA). The algorithm LICA relies on applying ICA locally to clusters of signals embedded in a high-dimensional
feature space of delayed coordinates. The components resembling the signals can be detected by various criteria like estimators of
kurtosis or the variance of autocorrelations depending on the statistical nature of the signal. The algorithm proposed can be applied
favorably to the problem of denoising multi-dimensional data. Another projective subspace denoising method using delayed coordinates
has been proposed recently with the algorithm dAMUSE. It combines the solution of blind source separation problems with denoising
efforts in an elegant way and proofs to be very efficient and fast. Finally, KPCA represents a non-linear projective subspace method that
is well suited for denoising also. Besides illustrative applications to toy examples and images, we provide an application of all algorithms
considered to the analysis of protein NMR spectra.info:eu-repo/semantics/publishedVersio
Meyer's surgical procedure for the treatment of lip carcinoma.
Lip carcinomas are generally treated by surgery. A reconstruction is often required if the resected segment exceeds one-third of the lip. Meyer's plasty is an alternate way of reconstructing the lower or upper lip. The aim of this study is to describe the technique, its indications and results. A retrospective review of all patients who underwent a Meyer's plasty in our institution is presented. Twenty-four consecutive patients were treated in Lausanne for T1 and T2 lip carcinomas between 1983 and 2001. Primary surgery associated with Meyer's plasty was performed in all cases. Data were collected from the medical records, and eight patients were recalled for clinical evaluation. The oncological, functional and aesthetic results were analyzed. The 5-year local control was 100%. Three patients developed metachronous lymph node metastasis. No patient died from the disease. A hindering microstomy was found in three cases, and two patients suffered from temporary oral leakage. No speech difficulty was encountered. The aesthetics was described as satisfying or good in 87% of the patients. Meyer's plasty following lip surgery of the upper or lower lip allows an aesthetic and functional one-stage reconstruction without compromising the oncological outcome
Human Endogenous Retrovirus and Neuroinflammation in Chronic Inflammatory Demyelinating Polyradiculoneuropathy.
Human endogenous retroviruses HERV-W encode a pro-inflammatory protein, named MSRV-Env from its original identification in Multiple Sclerosis. Though not detected in various neurological controls, MSRV-Env was found in patients with chronic inflammatory demyelinating polyradiculoneuropathies (CIDPs). This study investigated the expression of MSRV in CIDP and evaluated relevant MSRV-Env pathogenic effects.
50 CIDP patients, 19 other neurological controls (ONDs) and 65 healthy blood donors (HBDs) were recruited from two different countries. MSRV-env and -pol transcripts, IL6 and CXCL10 levels were quantified from blood samples. MSRV-Env immunohistology was performed in distal sensory nerves from CIDP and neurological controls biopsies. MSRV-Env pathogenic effects and mode of action were assayed in cultured primary human Schwann cells (HSCs).
In both cohorts, MSRV-env and -pol transcripts, IL6 positivity prevalence and CXCL10 levels were significantly elevated in CIDP patients when compared to HBDs and ONDs (statistically significant in all comparisons). MSRV-Env protein was detected in Schwann cells in 5/7 CIDP biopsies. HSC exposed to or transfected with MSRV-env presented a strong increase of IL6 and CXCL10 transcripts and protein secretion. These pathogenic effects on HSC were inhibited by GNbAC1, a highly specific and neutralizing humanized monoclonal antibody targeting MSRV-Env.
The present study showed that MSRV-Env may trigger the release of critical immune mediators proposed as instrumental factors involved in the pathophysiology of CIDP. Significant MSRV-Env expression was detected in a significant proportion of patients with CIDP, in which it may play a role according to its presently observed effects on Schwann cells along with previously known effects on immune cells. Experimental results also suggest that a biomarker-driven therapeutic strategy targeting this protein with a neutralizing antibody such as GNbAC1 may offer new perspectives for treating CIDP patients with positive detection of MSRV-Env expression.
Geneuro-Innovation, France
Probing the Local Velocity Distribution of WIMP Dark Matter with Directional Detectors
We explore the ability of directional nuclear-recoil detectors to constrain
the local velocity distribution of weakly interacting massive particle (WIMP)
dark matter by performing Bayesian parameter estimation on simulated
recoil-event data sets. We discuss in detail how directional information, when
combined with measurements of the recoil-energy spectrum, helps break
degeneracies in the velocity-distribution parameters. We also consider the
possibility that velocity structures such as cold tidal streams or a dark disk
may also be present in addition to the Galactic halo. Assuming a
carbon-tetrafluoride detector with a 30-kg-yr exposure, a 50-GeV WIMP mass, and
a WIMP-nucleon spin-dependent cross-section of 0.001 pb, we show that the
properties of a cold tidal stream may be well constrained. However, measurement
of the parameters of a dark-disk component with a low lag speed of ~50 km/s may
be challenging unless energy thresholds are improved.Comment: 38 pages, 15 figure
Results of the BiPo-1 prototype for radiopurity measurements for the SuperNEMO double beta decay source foils
The development of BiPo detectors is dedicated to the measurement of
extremely high radiopurity in Tl and Bi for the SuperNEMO
double beta decay source foils. A modular prototype, called BiPo-1, with 0.8
of sensitive surface area, has been running in the Modane Underground
Laboratory since February, 2008. The goal of BiPo-1 is to measure the different
components of the background and in particular the surface radiopurity of the
plastic scintillators that make up the detector. The first phase of data
collection has been dedicated to the measurement of the radiopurity in
Tl. After more than one year of background measurement, a surface
activity of the scintillators of (Tl) 1.5
Bq/m is reported here. Given this level of background, a larger BiPo
detector having 12 m of active surface area, is able to qualify the
radiopurity of the SuperNEMO selenium double beta decay foils with the required
sensitivity of (Tl) 2 Bq/kg (90% C.L.) with a six
month measurement.Comment: 24 pages, submitted to N.I.M.
Spectral modeling of scintillator for the NEMO-3 and SuperNEMO detectors
We have constructed a GEANT4-based detailed software model of photon
transport in plastic scintillator blocks and have used it to study the NEMO-3
and SuperNEMO calorimeters employed in experiments designed to search for
neutrinoless double beta decay. We compare our simulations to measurements
using conversion electrons from a calibration source of and show
that the agreement is improved if wavelength-dependent properties of the
calorimeter are taken into account. In this article, we briefly describe our
modeling approach and results of our studies.Comment: 16 pages, 10 figure
- …