72 research outputs found

    Use of probiotics in medical devices applied to some common pathologies.

    Get PDF
    Probiotics, defined as “living microorganisms that, whether ingested in useful amount, may have beneficial effects on human body”, are widely used in various products for human use, such as dietary supplements, medical devices and pharmaceutical products. The European Directive on medical devices (MDs) (DDM 93/42), also includes those MDs containing live microorganisms, particularly probiotics, that may have various destinations of use, including that of assisting the therapy of several human pathologies. In this brief note we analyzed the use of probiotics in MDs and how probiotics administration could represent one of the new frontiers of scientific research on the prevention and treatment of various diseases. We’ll analyze the literature on probiotics based MDs, to review their major targets in the therapy of some of the most common human pathologies: bacterial vaginosis and vaginitis, atopic dermatitis, infant colic, obesity, type 2 diabetes, and pharyngotonsillitis

    The Ag85B protein of Mycobacterium tuberculosis may turn a protective immune response induced by Ag85B-DNA vaccine into a potent but non-protective Th1 immune response in mice

    Get PDF
    Clarifying how an initial protective immune response to tuberculosis may later loose its efficacy is essential to understand tuberculosis pathology and to develop novel vaccines. In mice, a primary vaccination with Ag85B-encoding plasmid DNA (DNA-85B) was protective against Mycobacterium tuberculosis (MTB) infection and associated with Ag85B-specific CD4+ T cells producing IFN-gamma and controlling intramacrophagic MTB growth. Surprisingly, this protection was eliminated by Ag85B protein boosting. Loss of protection was associated with a overwhelming CD4+ T cell proliferation and IFN-gamma production in response to Ag85B protein, despite restraint of Th1 response by CD8+ T cell-dependent mechanisms and activation of CD4+ T cell-dependent IL-10 secretion. Importantly, these Ag85B-responding CD4+ T cells lost the ability to produce IFN-gamma and control MTB intramacrophagic growth in coculture with MTB-infected macrophages, suggesting that the protein-dependent expansion of non-protective CD4+ T cells determined dilution or loss of the protective Ag85B-specific CD4+ induced by DNA-85B vaccination. These data emphasize the need of exerting some caution in adopting aggressive DNA-priming, protein-booster schedules for MTB vaccines. They also suggest that Ag85B protein secreted during MTB infection could be involved in the instability of protective anti-tuberculosis immune response, and actually concur to disease progression

    Pseudo-outbreak of Mycobacterium gordonae in a teaching hospital: importance of strictly following decontamination procedures and emerging issues concerning sterilization

    Get PDF
    Aim of this study was to investigate a pseudo-outbreak of Mycobacterium gordonae analyzing isolates detected from clinical and environmental samples. Mycobacterium gordonae was detected in 7 out of 497 broncho-alveolar lavage (BAL) samples after bronchoscopy procedure in patients admitted to a teaching hospital between January and April 2013. During this pseudo-outbreak clinical, epidemiological, environmental and molecular investigations were performed. None of the patients met the criteria for non-tuberculous mycobacterial (NTM) lung disease and were treated for M. gordonae lung disease. Environmental investigation revealed M. gordonae in 3 samples: in tap water and in the water supply channel of the washer disinfector. All the isolates were subjected to genotyping by pulsed-field gel electrophoresis (PFGE). The PFGE revealed that only patients' isolates presented the same band pattern but no correlation with the environmental strain was detected. Surveillance of the outbreak and the strict adherence to the reprocessing procedure and its supplies resulted afterwards in no detection of M. gordonae in clinical respiratory samples. Clinical surveillance of patients was crucial to establish the start of NTM treatment. Regular screening of tap water and endoscopic equipment should be adopted to compare the clinical strains with the environmental ones when an outbreak occurs

    Mycobacterium tuberculosis Drug Resistance, Abkhazia

    Get PDF
    To the Editor: Drug-resistant tuberculosis (TB) has been identified as a major problem in the former Soviet Union, and was recently surveyed in the Aral Sea regions of Dashoguz (Turkmenistan) and Karakalpakstan (Uzbekistan) (1). However, few data are available for the Caucasian region and published reports have focused mainly on prisons (2,3). We report a drug resistance survey for first- and second-line anti-TB drugs conducted in Abkhazia, a Caucasian region of 8,600 km2 with approximately 250,000 inhabitants, at the western end of Georgia on the Black Sea

    Drug-resistant tuberculosis in Naples, 2008-2013

    Get PDF
    Background. Drug-resistant tuberculosis (TB) is an important threat in industrialized countries, but low information is known from Southern Italy. Here, we present the results of a retrospective study on TB cases diagnosed in 2008-2013 in Naples, the biggest city in the South of Italy. Methods. Six hundred ninety Mycobacterium tuberculosis strains were isolated at the Ospedali dei Colli of Naples, and resistance to first-line and second-line drugs was determined. Results. Multidrug-resistant (MDR) TB increased from 2008 to 2013, with most strains being isolated from migrants arriving from 41 countries. Overall MDR-TB rate was 4.5%: Italian-born persons, 2.2%; Romania, 7.5%; Former Soviet Union countries (Ukraine, Russia, Armenia, Georgia), 22.4%; all other foreign countries, 2.0%. Resistance of MDR strains to second-line drugs was high against kanamycin, ofloxacin, capreomycin. Conclusions. MDR-TB increased in 2008-13 and was mostly observed in migrants, indicating the need to intensify diagnosis and treatment of these populations in Naples

    Drug-Resistant Tuberculosis 2020: Where We Stand

    No full text
    The control of tuberculosis (TB) is hampered by the emergence of multidrug-resistant (MDR) Mycobacterium tuberculosis (Mtb) strains, defined as resistant to at least isoniazid and rifampin, the two bactericidal drugs essential for the treatment of the disease. Due to the worldwide estimate of almost half a million incident cases of MDR/rifampin-resistant TB, it is important to continuously update the knowledge on the mechanisms involved in the development of this phenomenon. Clinical, biological and microbiological reasons account for the generation of resistance, including: (i) nonadherence of patients to their therapy, and/or errors of physicians in therapy management, (ii) complexity and poor vascularization of granulomatous lesions, which obstruct drug distribution to some sites, resulting in resistance development, (iii) intrinsic drug resistance of tubercle bacilli, (iv) formation of non-replicating, drug-tolerant bacilli inside the granulomas, (v) development of mutations in Mtb genes, which are the most important molecular mechanisms of resistance. This review provides a comprehensive overview of these issues, and releases up-dated information on the therapeutic strategies recently endorsed and recommended by the World Health Organization to facilitate the clinical and microbiological management of drug-resistant TB at the global level, with attention also to the most recent diagnostic methods

    TARGETING DORMANT BACILLI TO FIGHT TUBERCULOSIS

    Get PDF
    Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), which kills about 2 million people annually. Furthermore, 2 billion people worldwide are latently infected with this organism, with 10% of them reactivating to active TB due to re-growth of nonreplicating (dormant) Mtb residing in their tissues. Because of the huge reservoir of latent TB it is important to find novel drugs/drug combinations killing dormant bacilli (microaerophiles, anaerobes and drug-tolerant persisters) surviving for decades in a wide spectrum of granulomatous lesions in the lungs of TB patients. Antibiotic treatment of drug-susceptible TB requires administration of isoniazid, rifampin, pyrazinamide, ethambutol for 2 months, followed by isoniazid and rifampin for 4 months. To avoid reactivation of dormant Mtb to active pulmonary TB, up to 9 months of treatment with isoniazid is required. Therefore, a strategy to eliminate dormant bacilli needs to be developed to shorten therapy of active and latent TB and reduce the reservoir of people with latent TB. Finding drugs with high rate of penetration into the caseous granulomas and understanding the biology of dormant bacilli and in particular of persister cells, phenotypically resistant to antibiotics, will be essential to eradicate Mtb from humans. In recent years unprecedented efforts have been done in TB drug discovery, aimed at identifying novel drugs and drug combinations killing both actively replicating and nonreplicating Mtb in vitro, in animal models and in clinical trials in humans
    • …
    corecore