7,942 research outputs found

    Heavy doping effects in high efficiency silicon solar cells

    Get PDF
    A model for bandgap shrinkage in semiconductors is developed and applied to silicon. A survey of earlier experiments, and of new ones, give an agreement between the model and experiments on n- and p-type silicon which is good as far as transport measurements in the 300 K range. The discrepancies between theory and experiment are no worse than the discrepancies between the experimental results of various authors. It also gives a good account of recent, optical determinations of band gap shrinkage at 5 K

    Representations of the exceptional and other Lie algebras with integral eigenvalues of the Casimir operator

    Full text link
    The uniformity, for the family of exceptional Lie algebras g, of the decompositions of the powers of their adjoint representations is well-known now for powers up to the fourth. The paper describes an extension of this uniformity for the totally antisymmetrised n-th powers up to n=9, identifying (see Tables 3 and 6) families of representations with integer eigenvalues 5,...,9 for the quadratic Casimir operator, in each case providing a formula (see eq. (11) to (15)) for the dimensions of the representations in the family as a function of D=dim g. This generalises previous results for powers j and Casimir eigenvalues j, j<=4. Many intriguing, perhaps puzzling, features of the dimension formulas are discussed and the possibility that they may be valid for a wider class of not necessarily simple Lie algebras is considered.Comment: 16 pages, LaTeX, 1 figure, 9 tables; v2: presentation improved, typos correcte

    Rank and border rank of Kronecker powers of tensors and Strassen's laser method

    Get PDF
    We prove that the border rank of the Kronecker square of the little Coppersmith–Winograd tensor Tcw,q is the square of its border rank for q> 2 and that the border rank of its Kronecker cube is the cube of its border rank for q> 4. This answers questions raised implicitly by Coppersmith & Winograd (1990, §11)and explicitly by BlĂ€ser (2013, Problem 9.8) and rules out the possibility of proving new upper bounds on the exponent of matrix multiplication using the square or cube of a little Coppersmith–Winograd tensor in this range. In the positive direction, we enlarge the list of explicit tensors potentially useful for Strassen's laser method, introducing a skew-symmetric version of the Coppersmith–Winograd tensor, Tskewcw,q. For q= 2 , the Kronecker square of this tensor coincides with the 3 × 3 determinant polynomial, det 3∈ C9⊗ C9⊗ C9, regarded as a tensor. We show that this tensor could potentially be used to show that the exponent of matrix multiplication is two. We determine new upper bounds for the (Waring) rank and the (Waring) border rank of det 3, exhibiting a strict submultiplicative behaviour for Tskewcw,2 which is promising for the laser method. We establish general results regarding border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of tensors in C3⊗ C3⊗ C3

    Fick's law and Fokker-Planck Equation in inhomogeneous environments

    Full text link
    In inhomogeneous environments, the correct expression of the diffusive flux is often not given by the Fick's law Γ=−D∇n\Gamma = - D \nabla n . The most general hydrodynamic equation modelling diffusion is indeed the Fokker-Planck Equation (FPE). The microscopic dynamics of each specific system may affect the form of the FPE, either establishing connections between the diffusion and the convection term, as well as providing supplementary terms. In particular, the Fick's form for the Diffusion Equation may arise only in consequence of a specific kind of microscopic dynamics. It is also shown how, in the presence of sharp inhomogeneities, even the hydrodynamic FPE limit may becomes inaccurate and mask some features of the true solution, as computed from the Master Equation.Comment: V2: English amended. V3: final version accepted by Physics Letters

    Kronecker powers of tensors and Strassen’s laser method

    Get PDF
    We answer a question, posed implicitly in [18, §11], [11, Rem. 15.44] and explicitly in [9, Problem 9.8], showing the border rank of the Kronecker square of the little Coppersmith-Winograd tensor is the square of the border rank of the tensor for all q > 2, a negative result for complexity theory. We further show that when q > 4, the analogous result holds for the Kronecker cube. In the positive direction, we enlarge the list of explicit tensors potentially useful for the laser method. We observe that a well-known tensor, the 3×3 determinant polynomial regarded as a tensor, det3 ∈ C9 C9 C9, could potentially be used in the laser method to prove the exponent of matrix multiplication is two. Because of this, we prove new upper bounds on its Waring rank and rank (both 18), border rank and Waring border rank (both 17), which, in addition to being promising for the laser method, are of interest in their own right. We discuss “skew” cousins of the little Coppersmith-Winograd tensor and indicate why they may be useful for the laser method. We establish general results regarding border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of tensors in C3 C3 C

    Universal restrictions to the conversion of heat into work derived from the analysis of the Nernst theorem as a uniform limit

    Full text link
    We revisit the relationship between the Nernst theorem and the Kelvin-Planck statement of the second law. We propose that the exchange of entropy uniformly vanishes as the temperature goes to zero. The analysis of this assumption shows that is equivalent to the fact that the compensation of a Carnot engine scales with the absorbed heat so that the Nernst theorem should be embedded in the statement of the second law. ----- Se analiza la relaci{\'o}n entre el teorema de Nernst y el enunciado de Kelvin-Planck del segundo principio de la termodin{\'a}mica. Se{\~n}alamos el hecho de que el cambio de entrop{\'\i}a tiende uniformemente a cero cuando la temperatura tiende a cero. El an{\'a}lisis de esta hip{\'o}tesis muestra que es equivalente al hecho de que la compensaci{\'o}n de una m{\'a}quina de Carnot escala con el calor absorbido del foco caliente, de forma que el teorema de Nernst puede derivarse del enunciado del segundo principio.Comment: 8pp, 4 ff. Original in english. Also available translation into spanish. Twocolumn format. RevTe

    Pattern Formation in Semiconductors

    Get PDF
    In semiconductors, nonlinear generation and recombination processes of free carriers and nonlinear charge transport can give rise to non-equilibrium phase transitions. At low temperatures, the basic nonlinearity is due to the autocatalytic generation of free carriers by impact ionization of shallow impurities. The electric field accelerates free electrons, causing an abrupt increase in free carrier density at a critical electric field. In static electric fields, this nonlinearity is known to yield complex filamentary current patterns bound to electric contacts

    Thermodynamics' 0-th-Law in a nonextensive scenario

    Full text link
    Tsallis' thermostatistics is by now recognized as a new paradigm for statistical mechanical considerations. However, it is still affected by a serious hindrance: the generalization of thermodynamics' zero-th law to a nonextensive scenario is plagued by difficulties. Here we show how to overcome this problem.Comment: 4 pages, latex; added references for section

    Notes on the Third Law of Thermodynamics.I

    Get PDF
    We analyze some aspects of the third law of thermodynamics. We first review both the entropic version (N) and the unattainability version (U) and the relation occurring between them. Then, we heuristically interpret (N) as a continuity boundary condition for thermodynamics at the boundary T=0 of the thermodynamic domain. On a rigorous mathematical footing, we discuss the third law both in Carath\'eodory's approach and in Gibbs' one. Carath\'eodory's approach is fundamental in order to understand the nature of the surface T=0. In fact, in this approach, under suitable mathematical conditions, T=0 appears as a leaf of the foliation of the thermodynamic manifold associated with the non-singular integrable Pfaffian form ÎŽQrev\delta Q_{rev}. Being a leaf, it cannot intersect any other leaf S=S= const. of the foliation. We show that (N) is equivalent to the requirement that T=0 is a leaf. In Gibbs' approach, the peculiar nature of T=0 appears to be less evident because the existence of the entropy is a postulate; nevertheless, it is still possible to conclude that the lowest value of the entropy has to belong to the boundary of the convex set where the function is defined.Comment: 29 pages, 2 figures; RevTex fil
    • 

    corecore