642 research outputs found

    The availability of local aerial photography in southern California

    Get PDF
    Some of the major photography and photogrammetric suppliers and users located in Southern California are listed. Recent trends in aerial photographic coverage of the Los Angeles basin area are also noted, as well as the uses of that imagery

    Superflares on Ordinary Solar-Type Stars

    Get PDF
    Short duration flares are well known to occur on cool main-sequence stars as well as on many types of `exotic' stars. Ordinary main-sequence stars are usually pictured as being static on time scales of millions or billions of years. Our sun has occasional flares involving up to 1031\sim 10^{31} ergs which produce optical brightenings too small in amplitude to be detected in disk-integrated brightness. However, we identify nine cases of superflares involving 103310^{33} to 103810^{38} ergs on normal solar-type stars. That is, these stars are on or near the main-sequence, are of spectral class from F8 to G8, are single (or in very wide binaries), are not rapid rotators, and are not exceedingly young in age. This class of stars includes many those recently discovered to have planets as well as our own Sun, and the consequences for any life on surrounding planets could be profound. For the case of the Sun, historical records suggest that no superflares have occurred in the last two millennia.Comment: 16 pages, accepted for publication in Ap

    Development status of a Laue lens project for gamma-ray astronomy

    Full text link
    We report the status of the HAXTEL project, devoted to perform a design study and the development of a Laue lens prototype. After a summary of the major results of the design study, the approach adopted to develop a Demonstration Model of a Laue lens is discussed, the set up described, and some results presented.Comment: 11 pages, 11 figures, 2007 SPIE Conference on Optics for EUV, X-Ray, and Gamma-Ray Astronomy II

    Design, simulation, and fabrication of a three-dimensional printed pump mimicking the left ventricle motion

    Get PDF
    The development of accurate replicas of the circulatory and cardiac system is fundamental for a deeper understanding of cardiovascular diseases and the testing of new devices. Although numerous works concerning mock circulatory loops are present in the current state of the art, still some limitations are present. In particular, a pumping system able to reproduce the left ventricle motion and completely compatible with the magnetic resonance environment to permit the four-dimensional flow monitoring is still missing. The aim of this work was to evaluate the feasibility of an actuator suitable for cardiovascular mock circuits. Particular attention was given to the ability to mimic the left ventricle dynamics including both compression and twisting with the magnetic resonance compatibility. In our study, a left ventricle model to be actuated through vacuum was designed. The realization of the system was evaluated with finite element analysis of different design solutions. After the in silico evaluation phase, the most suitable design in terms of physiological values reproduction was fabricated through three-dimensional printing for in vitro validation. A pneumatic experimental setup was developed to evaluate the pump performances in terms of actuation, in particular ventricle radial and longitudinal displacement, twist rotation, and ejection fraction. The study demonstrated the feasibility of a custom pneumatic pump for mock circulatory loops able to reproduce the physiological ventricle movement and completely suitable for the magnetic resonance environment

    The gamma-ray burst monitor for Lobster-ISS

    Get PDF
    Lobster-ISS is an X-ray all-sky monitor experiment selected by ESA two years ago for a Phase A study (now almost completed) for a future flight (2009) aboard the Columbus Exposed Payload Facility of the International Space Station. The main instrument, based on MCP optics with Lobster-eye geometry, has an energy passband from 0.1 to 3.5 keV, an unprecedented daily sensitivity of 2x10^{-12} erg cm^{-2}s$^{-1}, and it is capable to scan, during each orbit, the entire sky with an angular resolution of 4--6 arcmin. This X-ray telescope is flanked by a Gamma Ray Burst Monitor, with the minimum requirement of recognizing true GRBs from other transient events. In this paper we describe the GRBM. In addition to the minimum requirement, the instrument proposed is capable to roughly localize GRBs which occur in the Lobster FOV (162x22.5 degrees) and to significantly extend the scientific capabilities of the main instrument for the study of GRBs and X-ray transients. The combination of the two instruments will allow an unprecedented spectral coverage (from 0.1 up to 300/700 keV) for a sensitive study of the GRB prompt emission in the passband where GRBs and X-Ray Flashes emit most of their energy. The low-energy spectral band (0.1-10 keV) is of key importance for the study of the GRB environment and the search of transient absorption and emission features from GRBs, both goals being crucial for unveiling the GRB phenomenon. The entire energy band of Lobster-ISS is not covered by either the Swift satellite or other GRB missions foreseen in the next decade.Comment: 6 pages, 4 figures. Paper presented at the COSPAR 2004 General Assembly (Paris), accepted for publication in Advances in Space Research in June 2005 and available on-line at the Journal site (http://www.sciencedirect.com/science/journal/02731177), section "Articles in press

    Exploring the Hard X-/soft gamma-ray Continuum Spectra with Laue Lenses

    Full text link
    The history of X-ray astronomy has shown that any advancement in our knowledge of the X-ray sky is strictly related to an increase in instrument sensitivity. At energies above 60 keV, there are interesting prospects for greatly improving the limiting sensitivity of the current generation of direct viewing telescopes (with or without coded masks), offered by the use of Laue lenses. We will discuss below the development status of a Hard X-Ray focusing Telescope (HAXTEL) based on Laue lenses with a broad bandpass (from 60 to 600 keV) for the study of the X-ray continuum of celestial sources. We show two examplesof multi-lens configurations with expected sensitivity orders of magnitude better (1×108\sim 1 \times 10^{-8} photons cm2^{-2} s1^{-1} keV1^{-1} at 200 keV) than that achieved so far. With this unprecedented sensitivity, very exciting astrophysical prospects are opened.Comment: 4 pages, 10 figures, to be published in the Proc. of the 39th ESLAB Symosium, 19-21 April 200

    Observation and Modeling of the Solar Transition Region: II. Solutions of the Quasi-Static Loop Model

    Get PDF
    In the present work we undertake a study of the quasi-static loop model and the observational consequences of the various solutions found. We obtain the most general solutions consistent with certain initial conditions. Great care is exercised in choosing these conditions to be physically plausible (motivated by observations). We show that the assumptions of previous quasi-static loop models, such as the models of Rosner, Tucker and Vaiana (1978) and Veseckey, Antiochos and Underwood (1979), are not necessarily valid for small loops at transition region temperatures. We find three general classes of solutions for the quasi-static loop model, which we denote, radiation dominated loops, conduction dominated loops and classical loops. These solutions are then compared with observations. Departures from the classical scaling law of RTV are found for the solutions obtained. It is shown that loops of the type that we model here can make a significant contribution to lower transition region emission via thermal conduction from the upper transition region.Comment: 30 pages, 3 figures, Submitted to ApJ, Microsoft Word File 6.0/9

    Spectral Observations of Diffuse Far-Ultraviolet Emission from the Hot Phase of the Interstellar Medium with the Diffuse Ultraviolet Experiment

    Full text link
    One of the keys to interpreting the character and evolution of interstellar matter in the galaxy is understanding the distribution of the low density hot (10^5 K -10^6 K) phase of the interstellar medium (ISM). This phase is much more difficult to observe than the cooler high density components of the ISM because of its low density and lack of easily observable tracers. Because gas of this temperature emits mainly in the far ultraviolet (912 angstrom - 1800 angstroms) and extreme ultraviolet (80 angstrom - 912 angstrom), and (for gas hotter than 10^6 K) X-rays, observations in these bands can provide important constraints to the distribution of this gas. Because of interstellar opacity at EUV wavelengths, only FUV and X-ray observations can provide clues to the properties of hot gas from distant regions. We present results from a search for FUV emission from the diffuse ISM conducted with an orbital FUV spectrometer, DUVE, which was launched in July, 1992. The DUVE spectrometer, which covers the band from 950 angstrom to 1080 angstrom with 3.2 angstrom resolution, observed a region of low neutral hydrogen column density near the south galactic pole for a total effective integration time of 1583 seconds. The only emission line detected was a geocoronal hydrogen line at 1025 angstrom. We are able to place upper limits to several expected emission features that provide constraints on interstellar plasma parameters. We are also able to place limits on the continuum emission throughout the bandpass. We compare these limits and other diffuse observations with several models of the structure of the interstellar medium and discuss the ramifications.Comment: 23 pages, LaTeX, 10 eps figures, uses aaspp4.sty and Psfig/TeX Release 1.2, Minor editorial change

    Devices for Screening and Monitoring of Tumors Based on Chemoresistive Sensors

    Get PDF
    Abstract In this work two devices are presented, named SCENT A1 (A1) and SCENT B1 (B1), composed of chemoresistive sensors. Such devices are capable of discriminating the different compositions of gas mixtures emitted by stools, for colorectal cancer screening (A1), and by blood, for tumors monitoring (B1), according to defined sampling protocols. Results have been acquired by a LabView® software and statistically treated (e.g. quadratic discriminant analysis, QDA) and show to be encouraging with an error of 5% for SCENT A1. Preliminary results of SCENT B1 proved to be promising. Further studies will be carried out for clinically validating the two devices

    Inverse Geometric Approach to the Simulation of the Circular Growth. The Case of Multicellular Tumor Spheroids

    Full text link
    We demonstrate the power of the genetic algorithms to construct the cellular automata model simulating the growth of 2-dimensional close-to-circular clusters revealing the desired properties, such as the growth rate and, at the same time, the fractal behavior of their contours. The possible application of the approach in the field of tumor modeling is outlined
    corecore