52 research outputs found

    Dying piece by piece: carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress

    Get PDF
    Carbon starvation as a mechanism of tree mortality is poorly understood. We exposed seedlings of aspen (Populus tremuloides) to complete darkness at 20 or 28 °C to identify minimum non-structural carbohydrate (NSC) concentrations at which trees die and to see if these levels vary between organs or with environmental conditions. We also first grew seedlings under different shade levels to determine if size affects survival time under darkness due to changes in initial NSC concentration and pool size and/or respiration rates. Darkness treatments caused a gradual dieback of tissues. Even after half the stem had died, substantial starch reserves were still present in the roots (1.3-3% dry weight), indicating limitations to carbohydrate remobilization and/or transport during starvation in the absence of water stress. Survival time decreased with increased temperature and with increasing initial shade level, which was associated with smaller biomass, higher respiration rates, and initially smaller NSC pool size. Dead tissues generally contained no starch, but sugar concentrations were substantially above zero and differed between organs (~2% in stems up to ~7.5% in leaves) and, at times, between temperature treatments and initial, pre-darkness shade treatments. Minimum root NSC concentrations were difficult to determine because dead roots quickly began to decompose, but we identify 5-6% sugar as a potential threshold for living roots. This variability may complicate efforts to identify critical NSC thresholds below which trees starve

    Splitting the Difference: Heterogeneous Soil Moisture Availability Affects Aboveground and Belowground Reserve and Mass Allocation in Trembling Aspen

    Get PDF
    When exploring the impact of resource availability on perennial plants, artificial treatments often apply conditions homogeneously across space and time, even though this rarely reflects conditions in natural systems. To investigate the effects of spatially heterogeneous soil moisture on morphological and physiological responses, trembling aspen (Populus tremuloides) saplings were used in a split-pot experiment. Following the division of the root systems, saplings were established for a full year and then subjected to either heterogeneous (portion of the root system exposed to non-lethal drought) or homogeneous (whole root system exposed to non-lethal drought or well-watered) treatments. Above- and belowground growth and non-structural carbohydrate (NSC) reserves (soluble sugars and starch) were measured to determine how allocation of reserves and mass between and within organs changed in response to variation in soil moisture availability. In contrast to saplings in the homogeneous drought treatment, which experienced reduced shoot growth, leaf abscission and fine root loss, saplings exposed to the heterogeneous conditions maintained similar aboveground growth and increased root system allocation compared to well-watered saplings. Interestingly under heterogeneous soil moisture conditions, the portion of the root system that was resource limited had no root dieback and increased carbon reserve concentrations, while the portion of the root system that was not resource limited added new roots (30% increase). Overall, saplings subjected to the heterogeneous soil moisture regime over-compensated belowground, both in mass and NSC reserves. These results indicate that the differential allocation of mass or reserves between above- and belowground organs, but also within the root system can occur. While the mechanisms and processes involved in these patterns are not clear, these responses could be interpreted as adaptations and acclimations to preserve the integrity of the entire sapling and suggests that different portions of plant organs might respond autonomously to local conditions. This study provides further appreciation of the complexity of the mechanisms by which plants manage heterogeneous conditions and offers evidence that spatial and temporal variability of resource availability, particularly belowground, needs to be accounted for when extrapolating and modeling stress responses at larger temporal and spatial scales

    Inconsistent Growth Response to Fertilization and Thinning of Lodgepole Pine in the Rocky Mountain Foothills Is Linked to Site Index

    Get PDF
    Fertilization of conifers often results in highly variable growth responses across sites which are difficult to predict. The goal of this study was to predict the growth response of lodgepole pine (Pinus contorta var. latifolia) crop trees to thinning and fertilization using basic site and foliar characteristics. Fifteen harvest-origin stands along the foothills of the Rocky Mountains of Alberta were subjected to six treatments including two levels of thinning (thinning to 2500 stems per hectare and a control) and three types of fertilization (nitrogen-only fertilization, complete fertilization including nitrogen with added P, K, S, Mg, and B, and no fertilization). After three growing seasons, the growth response and foliar status of the crop trees were examined and this response was related to site and foliar characteristics. There was a small and highly variable additive response to fertilization and thinning; diameter growth of crop trees increased relative to the controls an average of 0.3 cm with thinning, 0.3 cm with either N-only or complete fertilization and 0.6 cm when thinned and fertilized. The increase in diameter growth with thinning and nitrogen-only fertilization was positively related to site index but not to any other site factors or pretreatment foliar variables such as nutrient concentrations, ratios, or thresholds

    A global view of aspen : Conservation science for widespread keystone systems

    Get PDF
    Across the northern hemisphere, six species of aspen (Populus spp.) play a disproportionately important role in promoting biodiversity, sequestering carbon, limiting forest disturbances, and providing other ecosystem services. These species are illustrative of efforts to move beyond single-species conservation because they facilitate hundreds of plants and animals worldwide. This review is intended to place aspen in a global conservation context by focusing on the many scientific advances taking place in such biologically diverse systems. In this manner, aspen may serve as a model for other widespread keystone systems where science-based practice may have world implications for biodiversity conservation. In many regions, aspen can maintain canopy dominance for decades to centuries as the sole major broadleaf trees in forested landscapes otherwise dominated by conifers. Aspen ecosystems are valued for many reasons, but here we highlight their potential as key contributors to regional and global biodiversity. We present global trends in research priorities, strengths, and weaknesses based on, 1) a qualitative survey, 2) a systematic literature analysis, and 3) regional syntheses of leading research topics. These regional syntheses explore important aspen uses, threats, and research priorities with the ultimate intent of research sharing focused on sound conservation practice. In all regions, we found that aspen enhance biodiversity, facilitate rapid (re)colonization in natural and damaged settings (e.g., abandoned mines), and provide adaptability in changing environments. Common threats to aspen ecosystems in many, but not all, regions include effects of herbivory, land clearing, logging practices favoring conifer species, and projected climate warming. We also highlight regional research gaps that emerged from the three survey approaches above. We believe multi-scale research is needed that examines disturbance processes in the context of dynamic climates where ecological, physiological, and genetic variability will ultimately determine widespread aspen sustainability. Based on this global review of aspen research, we argue for the advancement of the “mega-conservation” strategy, centered on the idea of sustaining a set of common keystone communities (aspen) that support wide arrays of obligate species. This approach contrasts with conventional preservation which focuses limited resources on individual species residing in narrow niches.Peer reviewe

    Dynamics of initial carbon allocation after drought release in mature Norway spruce—Increased belowground allocation of current photoassimilates covers only half of the carbon used for fine‐root growth

    Get PDF
    After drought events, tree recovery depends on sufficient carbon (C) allocation to the sink organs. The present study aimed to elucidate dynamics of tree-level C sink activity and allocation of recent photoassimilates (Cnew_{new}) and stored C in c. 70-year-old Norway spruce (Picea abies) trees during a 4-week period after drought release. We conducted a continuous, whole-tree 13^{13}C labeling in parallel with controlled watering after 5 years of experimental summer drought. The fate of Cnew_{new} to growth and CO2_{2} efflux was tracked along branches, stems, coarse- and fine roots, ectomycorrhizae and root exudates to soil CO2_{2} efflux after drought release. Compared with control trees, drought recovering trees showed an overall 6% lower C sink activity and 19% less allocation of Cnew_{new} to aboveground sinks, indicating a low priority for aboveground sinks during recovery. In contrast, fine-root growth in recovering trees was seven times greater than that of controls. However, only half of the C used for new fine-root growth was comprised of Cnew_{new} while the other half was supplied by stored C. For drought recovery of mature spruce trees, in addition to Cnew_{new}, stored C appears to be critical for the regeneration of the fine-root system and the associated water uptake capacity

    Forest restoration following surface mining disturbance: challenges and solutions

    Full text link

    The role of plant species selection in the rebuilding of resilient forest ecosystems after severe disturbance

    No full text
    Resource extraction results in severe disturbance to landscapes representing a range of boreal forest ecosystems. In Canada, operators are obligated to revegetate the disturbed land to
 self-sustaining, locally common boreal forest 
 . An understanding of the natural processes, relationships, and dynamics in these forest ecosystems is key to rebuilding resilient and sustainable boreal forests. In this context resilience can encompass both recovering from the mining disturbance and the capacity to recover from future natural disturbances and stresses. In this presentation I will discuss the aspect of selection and establishment of plant species in restoring diverse and productive forest ecosystems, which therefore possess properties that are likely to confer resilience. Recognizing the role of the species being reintroduced during the recovery of severely disturbed areas is critical in determining the trajectories along which reclaimed forest stands develop. As such, the autecology and life-history traits of these species and their abundance through time and space are critical to assess resistance and resiliency of these future ecosystems. In this presentation I will give examples of some of the roles plants and their traits play in the development of resistance and resiliency in reclaimed novel ecosystems emphasizing linkages among plants and ecosystem processes
    • 

    corecore