99 research outputs found

    A Meta-Analysis of Local Adaptation in Plants

    Get PDF
    Local adaptation is of fundamental importance in evolutionary, population, conservation, and global-change biology. The generality of local adaptation in plants and whether and how it is influenced by specific species, population and habitat characteristics have, however, not been quantitatively reviewed. Therefore, we examined published data on the outcomes of reciprocal transplant experiments using two approaches. We conducted a meta-analysis to compare the performance of local and foreign plants at all transplant sites. In addition, we analysed frequencies of pairs of plant origin to examine whether local plants perform better than foreign plants at both compared transplant sites. In both approaches, we also examined the effects of population size, and of the habitat and species characteristics that are predicted to affect local adaptation. We show that, overall, local plants performed significantly better than foreign plants at their site of origin: this was found to be the case in 71.0% of the studied sites. However, local plants performed better than foreign plants at both sites of a pair-wise comparison (strict definition of local adaption) only in 45.3% of the 1032 compared population pairs. Furthermore, we found local adaptation much more common for large plant populations (>1000 flowering individuals) than for small populations (<1000 flowering individuals) for which local adaptation was very rare. The degree of local adaptation was independent of plant life history, spatial or temporal habitat heterogeneity, and geographic scale. Our results suggest that local adaptation is less common in plant populations than generally assumed. Moreover, our findings reinforce the fundamental importance of population size for evolutionary theory. The clear role of population size for the ability to evolve local adaptation raises considerable doubt on the ability of small plant populations to cope with changing environments

    Prevalence and predictors of 6-month exclusive breastfeeding among Canadian women: a national survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In spite of the evidence supporting the importance of breastfeeding during the first year of life, data on breastfeeding practices remain limited in Canada. The study aimed to examine the prevalence and predictors of 6-month exclusive breastfeeding among Canadian women.</p> <p>Methods</p> <p>The analysis was based on the Maternity Experience Survey targeting women aged ≥ 15 years who had singleton live births between February 2006 - May 2006 in the Canadian provinces and November 2005 - February 2006 in the territories. The main outcome was exclusive breastfeeding based on the World Health Organization definition. Socioeconomic, demographic, maternal, pregnancy and delivery related variables were considered for a multivariate logistic regression using stepwise modeling. Bootstrapping was performed to account for the complex sampling design.</p> <p>Results</p> <p>The sample size in this study was 5,615 weighted to represent 66,810 Canadian women. While ever breastfeeding was 90.3%, the 6-month exclusive breastfeeding rate was 13.8%. Based on the regression model, having higher years of education, residing in the Northern territories and Western provinces, living with a partner, having had previous pregnancies, having lower pre-pregnancy body mass index and giving birth at older age were associated with increased likelihood of 6-month exclusive breastfeeding. Moreover, smoking during pregnancy, Caesarean birth, infant's admission to the intensive care unit and maternal employment status before 6 months of infant's age were negatively associated with exclusive breastfeeding. Mothers choosing to deliver at home were more likely to remain exclusively breastfeeding for 6 months (Odds Ratio: 5.29, 95% Confidence Interval: 2.95-9.46).</p> <p>Conclusions</p> <p>The 6-month exclusive breastfeeding rate is low in Canada. The study results constitute the basis for designing interventions that aim to bridge the gap between the current practices of breastfeeding and the World Health Organization recommendation.</p

    The genome-wide dynamics of purging during selfing in maize

    Get PDF
    Self-fertilization (also known as selfing) is an important reproductive strategy in plants and a widely applied tool for plant genetics and plant breeding. Selfing can lead to inbreeding depression by uncovering recessive deleterious variants, unless these variants are purged by selection. Here we investigated the dynamics of purging in a set of eleven maize lines that were selfed for six generations. We show that heterozygous, putatively deleterious single nucleotide polymorphisms are preferentially lost from the genome during selfing. Deleterious single nucleotide polymorphisms were lost more rapidly in regions of high recombination, presumably because recombination increases the efficacy of selection by uncoupling linked variants. Overall, heterozygosity decreased more slowly than expected, by an estimated 35% to 40% per generation instead of the expected 50%, perhaps reflecting pervasive associative overdominance. Finally, three lines exhibited marked decreases in genome size due to the purging of transposable elements. Genome loss was more likely to occur for lineages that began with larger genomes with more transposable elements and chromosomal knobs. These three lines purged an average of 398 Mb from their genomes, an amount equivalent to three Arabidopsis thaliana genomes per lineage, in only a few generations

    Developmental pathways inferred from modularity, morphological integration and fluctuating asymmetry patterns in the human face

    Get PDF
    Facial asymmetries are usually measured and interpreted as proxies to developmental noise. However, analyses focused on its developmental and genetic architecture are scarce. To advance on this topic, studies based on a comprehensive and simultaneous analysis of modularity, morphological integration and facial asymmetries including both phenotypic and genomic information are needed. Here we explore several modularity hypotheses on a sample of Latin American mestizos, in order to test if modularity and integration patterns difer across several genomic ancestry backgrounds. To do so, 4104 individuals were analyzed using 3D photogrammetry reconstructions and a set of 34 facial landmarks placed on each individual. We found a pattern of modularity and integration that is conserved across sub-samples difering in their genomic ancestry background. Specifcally, a signal of modularity based on functional demands and organization of the face is regularly observed across the whole sample. Our results shed more light on previous evidence obtained from Genome Wide Association Studies performed on the same samples, indicating the action of diferent genomic regions contributing to the expression of the nose and mouth facial phenotypes. Our results also indicate that large samples including phenotypic and genomic metadata enable a better understanding of the developmental and genetic architecture of craniofacial phenotypes

    The self-organizing fractal theory as a universal discovery method: the phenomenon of life

    Get PDF
    A universal discovery method potentially applicable to all disciplines studying organizational phenomena has been developed. This method takes advantage of a new form of global symmetry, namely, scale-invariance of self-organizational dynamics of energy/matter at all levels of organizational hierarchy, from elementary particles through cells and organisms to the Universe as a whole. The method is based on an alternative conceptualization of physical reality postulating that the energy/matter comprising the Universe is far from equilibrium, that it exists as a flow, and that it develops via self-organization in accordance with the empirical laws of nonequilibrium thermodynamics. It is postulated that the energy/matter flowing through and comprising the Universe evolves as a multiscale, self-similar structure-process, i.e., as a self-organizing fractal. This means that certain organizational structures and processes are scale-invariant and are reproduced at all levels of the organizational hierarchy. Being a form of symmetry, scale-invariance naturally lends itself to a new discovery method that allows for the deduction of missing information by comparing scale-invariant organizational patterns across different levels of the organizational hierarchy
    corecore