17 research outputs found

    Hello from the other side: Robust contralateral interference in tactile detection

    Get PDF
    Touch is unique among the sensory modalities in that our tactile receptors are spread across the body surface and continuously receive different inputs at the same time. These inputs vary in type, properties, relevance according to current goals, and, of course, location on the body. Sometimes, they must be integrated, and other times set apart and distinguished. Here, we investigate how simultaneous stimulation to different body sites affects tactile cognition. Specifically, we characterized the impact of irrelevant tactile sensations on tactile change detection. To this end, we embedded detection targets amidst ongoing performance, akin to the conditions encountered in everyday life, where we are constantly confronted with new events within ongoing stimuli. In the set of experiments presented here, participants detected a brief intensity change (.04 s) within an ongoing vibrotactile stimulus (1.6 s) that was always presented in a constantly attended location. The intensity change (i.e., the detection target) varied parametrically, from hardly detectable to easily detectable. In half of the trials, irrelevant ongoing stimulation was simultaneously presented to a site across the body midline, but participants were instructed to ignore it. In line with previous bimanual studies employing brief onset targets, we document robust interference on performance due to the irrelevant stimulation at each of the measured body sites (homologous and nonhomologous fingers, and the contralateral ankle). After describing this basic phenomenon, we further examine the conditions under which such interference occurs in three additional tasks. In each task, we honed in on a different aspect of the stimulation protocol (e.g., hand distance, the strength of the irrelevant stimulation, the detection target itself) in order to better understand the principles governing the observed interference effects. Our findings suggest a minimal role for exogenous attentional capture in producing the observed interference effects (Exp. 2), and a principled distribution of attentional resources or sensory integration between body sides (Exps. 3, 4). In our last study (Exp. 4), we presented bilateral tactile targets of varying intensities to both the relevant and irrelevant stimulation sites. We then characterized the degree to which the irrelevant stimulation is also processed. Our results—that participants’ perception of target intensity is always proportional to the combined bilateral signal—suggest that both body sites are equally weighed and processed despite clear instructions to attend only the target site. In light of this observation and participants’ inability to use selection processes to guide their perception, we propose that bilateral tactile inputs are automatically combined, quite possibly early in the hierarchy of somatosensory processing

    Beta-Band Activity Is a Signature of Statistical Learning

    Get PDF
    First published August 21, 2020.Through statistical learning (SL), cognitive systems may discover the underlying regularities in the environment. Testing human adults (n = 35, 21 females), we document, in the context of a classical visual SL task, divergent rhythmic EEG activity in the interstimulus delay periods within patterns versus between patterns (i.e., pattern transitions). Our findings reveal increased oscillatory activity in the beta band (;20 Hz) at triplet transitions that indexes learning: it emerges with increased pattern repetitions; and importantly, it is highly correlated with behavioral learning outcomes. These findings hold the promise of converging on an online measure of learning regularities and provide important theoretical insights regarding the mechanisms of SL and predictionThis work was supported by ERC Advanced Grant Project 692502-L2STAT to R.F., Marie Skłodowska-Curie Grant 743528 (IF-EF, European Union’s Horizon 2020 Research and Innovation Program) to L.B., the Basque Government BERC 2018-2021 program, and the Spanish State Research Agency BCBL Severo Ochoa excellence accreditation SEV-2015-0490

    Improved control of exogenous attention in action video game players

    Get PDF
    Action video game players (VGPs) have demonstrated a number of attentional advantages over non-players. Here, we propose that many of those benefits might be underpinned by improved control over exogenous (i.e., stimulus-driven) attention. To test this we used an anti-cueing task, in which a sudden-onset cue indicated that the target would likely appear in a separate location on the opposite side of the fixation point. When the time between the cue onset and the target onset was short (40 ms), non-players (nVGPs) showed a typical exogenous attention effect. Their response times were faster to targets presented at the cued (but less probable) location compared with the opposite (more probable) location. VGPs, however, were less likely to have their attention drawn to the location of the cue. When the onset asynchrony was long (600 ms), VGPs and nVGPs were equally able to endogenously shift their attention to the likely (opposite) target location. In order to rule out processing-speed differences as an explanation for this result, we also tested VGPs and nVGPs on an attentional blink (AB) task. In a version of the AB task that minimized demands on task switching and iconic memory, VGPs and nVGPs did not differ in second target identification performance (i.e., VGPs had the same magnitude of AB as nVGPs), suggesting that the anti-cueing results were due to flexible control over exogenous attention rather than to more general speed-of-processing differences

    Shifting attention in viewer- and object-based reference frames after unilateral brain injury

    Get PDF
    The aims of the present study were to investigate the respective roles that object- and viewer-based reference frames play in reorienting visual attention, and to assess their influence after unilateral brain injury. To do so, we studied 16 right hemisphere injured (RHI) and 13 left hemisphere injured (LHI) patients. We used a cueing design that manipulates the location of cues and targets relative to a display comprised of two rectangles (i.e., objects). Unlike previous studies with patients, we presented all cues at midline rather than in the left or right visual fields. Thus, in the critical conditions in which targets were presented laterally, reorienting of attention was always from a midline cue. Performance was measured for lateralized target detection as a function of viewer-based (contra- and ipsilesional sides) and object-based (requiring reorienting within or between objects) reference frames. As expected, contralesional detection was slower than ipsilesional detection for the patients. More importantly, objects influenced target detection differently in the contralesional and ipsilesional fields. Contralesionally, reorienting to a target within the cued object took longer than reorienting to a target in the same location but in the uncued object. This finding is consistent with object-based neglect. Ipsilesionally, the means were in the opposite direction. Furthermore, no significant difference was found in object-based influences between the patient groups (RHI vs. LHI). These findings are discussed in the context of reference frames used in reorienting attention for target detection

    Attentional and perceptual factors affecting the attentional blink for faces and objects.

    No full text

    Perplexity about periodicity repeats perpetually: A response to Brookshire

    No full text
    Brookshire (2022) claims that previous analyses of periodicity in detection performance after a reset event suffer from extreme false-positive rates. Here we show that this conclusion is based on an incorrect implemention of a null-hypothesis of aperiodicity, and that a correct implementation confirms low false-positive rates. Furthermore, we clarify that the previously used method of shuffling-in-time, and thereby shuffling-in-phase, cleanly implements the null hypothesis of no temporal structure after the reset, and thereby of no phase locking to the reset. Moving from a corresponding phase-locking spectrum to an inference on the periodicity of the underlying process can be accomplished by parameterizing the spectrum. This can separate periodic from non-periodic components, and quantify the strength of periodicity

    Rhythmic modulation of visual discrimination is linked to individuals' spontaneous motor tempo

    No full text
    The impact of external rhythmic structure on perception has been demonstrated across different modalities and experimental paradigms. However, recent findings emphasize substantial individual differences in rhythm-based perceptual modulation. Here, we examine the link between spontaneous rhythmic preferences, as measured through the motor system, and individual differences in rhythmic modulation of visual discrimination. As a first step, we measure individual rhythmic preferences using the spontaneous tapping task. Then we assess perceptual rhythmic modulation using a visual discrimination task in which targets can appear either in-phase or out-of-phase with a preceding rhythmic stream of visual stimuli. The tempo of the preceding stream was manipulated over different experimental blocks (0.77 Hz, 1.4 Hz, 2 Hz). We find that visual rhythmic stimulation modulates discrimination performance. The modulation is dependent on the tempo of stimulation, with maximal perceptual benefits for the slowest tempo of stimulation (0.77 Hz). Most importantly, the strength of modulation is also linked to individuals' spontaneous motor tempo. Individuals with slower spontaneous tempi show greater rhythmic modulation compared to individuals with faster spontaneous tempi. This finding suggests that different tempi affect the cognitive system with varying levels of efficiency and that self-generated rhythms impact our ability to utilize rhythmic structure in the environment for guiding perception and performance

    Visual hemispatial neglect, re-assessed

    Get PDF
    Increased computer use in clinical settings offers an opportunity to develop new neuropsychological tests that exploit the control computers have over stimulus dimensions and timing. However, before adopting new tools, empirical validation is necessary. In the current study, our aims were twofold: to describe a computerized adaptive procedure with broad potential for neuropsychological investigations, and to demonstrate its implementation in testing for visual hemispatial neglect. Visual search results from adaptive psychophysical procedures are reported from 12 healthy individuals and 23 individuals with unilateral brain injury. Healthy individuals reveal spatially symmetric performance on adaptive search measures. In patients, psychophysical outcomes (as well as those from standard paper-and-pencil search tasks) reveal visual hemispatial neglect. Consistent with previous empirical studies of hemispatial neglect, lateralized impairments in adaptive conjunction search are greater than in adaptive feature search tasks. Furthermore, those with right hemisphere damage show greater lateralized deficits in conjunction search than do those with left hemisphere damage. We argue that adaptive tests, which automatically adjust to each individual's performance level, are efficient methods for both clinical evaluations and neuropsychological investigations and have the potential to detect subtle deficits even in chronic stages, when flagrant clinical signs have frequently resolved

    Feature-Based Attention Samples Stimuli Rhythmically

    No full text
    Published: February 7, 2019Attention supports the allocation of resources to relevant locations and objects in a scene. Under most conditions, several stimuli compete for neural representation. Attention biases neural representation toward the response associated with the attended object [1, 2]. Therefore, an attended stimulus enjoys a neural response that resembles the response to that stimulus in isolation. Factors that determine and generate attentional bias have been researched, ranging from endogenously controlled processes to exogenous capture of attention [1–4]. Recent studies investigate the temporal structure governing attention. When participants monitor a single location, visual-target detection depends on the phase of an 8-Hz brain rhythm [5, 6]. When two locations are monitored, performance fluctuates at 4 Hz for each location [7, 8]. The hypothesis is that 4-Hz sampling for two locations may reflect a common sampler that operates at 8 Hz globally, which is divided between relevant locations [5–7, 9]. The present study targets two properties of this phenomenon, called rhythmic-attentional sampling: first, sampling is typically described for selection over different locations. We examined whether rhythmic sampling is limited to selection over space or whether it extends to feature-based attention. Second, we examined whether sampling at 4 Hz results from the division of an 8-Hz rhythm over two objects.We found that two overlapping objects defined by features are sampled at 4 Hz per object. In addition, performance on a single object fluctuated at 8 Hz. Rhythmic sampling of features did not result from temporal structure in eye movements.This work was supported by funds from the James McDonnell Scholar Award for Understanding Human Cognition as well as the National Israeli Psychobiology Institute (both awarded to A.N.L.). As a library fellow, A.N.L. would like to thank the Van Leer Jerusalem Institute for providing the psace to think and write. M.I. is supported by the Humanities Fund PhD program in Linguistics and the Jack, Joseph and Morton Mandel School for Advanced Studies in the Humanities, and C.G.R. is supported via the Spanish Ministry of Economy and Competitiveness, through the ‘‘Severo Ochoa Programme for Centres/ Units of Excellence in R&D’’ (SEV-2015-490)
    corecore