50 research outputs found

    Cell signalling by reactive lipid species: new concepts and molecular mechanisms

    Get PDF
    The process of lipid peroxidation is widespread in biology and is mediated through both enzymatic and non-enzymatic pathways. A significant proportion of the oxidized lipid products are electrophilic in nature, the RLS (reactive lipid species), and react with cellular nucleophiles such as the amino acids cysteine, lysine and histidine. Cell signalling by electrophiles appears to be limited to the modification of cysteine residues in proteins, whereas non-specific toxic effects involve modification of other nucleophiles. RLS have been found to participate in several physiological pathways including resolution of inflammation, cell death and induction of cellular antioxidants through the modification of specific signalling proteins. The covalent modification of proteins endows some unique features to this signalling mechanism which we have termed the ‘covalent advantage’. For example, covalent modification of signalling proteins allows for the accumulation of a signal over time. The activation of cell signalling pathways by electrophiles is hierarchical and depends on a complex interaction of factors such as the intrinsic chemical reactivity of the electrophile, the intracellular domain to which it is exposed and steric factors. This introduces the concept of electrophilic signalling domains in which the production of the lipid electrophile is in close proximity to the thiol-containing signalling protein. In addition, we propose that the role of glutathione and associated enzymes is to insulate the signalling domain from uncontrolled electrophilic stress. The persistence of the signal is in turn regulated by the proteasomal pathway which may itself be subject to redox regulation by RLS. Cell death mediated by RLS is associated with bioenergetic dysfunction, and the damaged proteins are probably removed by the lysosome-autophagy pathway

    Proteomic analysis of 4-hydroxynonenal (4-HNE) modified proteins in liver mitochondria from chronic ethanol-fed rats

    Get PDF
    Chronic ethanol-mediated oxidative stress and lipid peroxidation increases the levels of various reactive lipid species including 4-hydroxynonenal (4-HNE), which can subsequently modify proteins in the liver. It has been proposed that 4-HNE modification adversely affects the structure and/or function of mitochondrial proteins, thereby impairing mitochondrial metabolism. To determine whether chronic ethanol consumption increases levels of 4-HNE modified proteins in mitochondria, male rats were fed control and ethanol-containing diets for 5 weeks and mitochondrial samples were analyzed using complementary proteomic methods. Five protein bands (approx. 35, 45, 50, 70, and 90 kDa) showed strong immunoreactivity for 4-HNE modified proteins in liver mitochondria from control and ethanol-fed rats when proteins were separated by standard 1D SDS-PAGE. Using high-resolution proteomic methods (2D IEF/SDS-PAGE and BN-PAGE) we identified several mitochondrial proteins immunoreactive for 4-HNE, which included mitofilin, dimethylglycine dehydrogenase, choline dehydrogenase, electron transfer flavoprotein α, cytochrome c1, enoyl CoA hydratase, and cytochrome c. The electron transfer flavoprotein α consistently showed increased 4-HNE immunoreactivity in mitochondria from ethanol-fed rats as compared to mitochondria from the control group. Increased 4-HNE reactivity was also detected for dimethylglycine dehydrogenase, enoyl CoA hydratase, and cytochrome c in ethanol samples when mitochondria were analyzed by BN-PAGE. In summary, this work identifies new targets of 4-HNE modification in mitochondria and provides useful information needed to better understand the molecular mechanisms underpinning chronic ethanol-induced mitochondrial dysfunction and liver injury

    Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products.

    No full text
    The molecular mechanisms through which oxidized lipids and their electrophilic decomposition products mediate redox cell signalling is not well understood and may involve direct modification of signal-transduction proteins or the secondary production of reactive oxygen or nitrogen species in the cell. Critical in the adaptation of cells to oxidative stress, including exposure to subtoxic concentrations of oxidized lipids, is the transcriptional regulation of antioxidant enzymes, many of which are controlled by antioxidant-responsive elements (AREs), also known as electrophile-responsive elements. The central regulator of the ARE response is the transcription factor Nrf2 (NF-E2-related factor 2), which on stimulation dissociates from its cytoplasmic inhibitor Keap1, translocates to the nucleus and transactivates ARE-dependent genes. We hypothesized that electrophilic lipids are capable of activating ARE through thiol modification of Keap1 and we have tested this concept in an intact cell system using induction of glutathione synthesis by the cyclopentenone prostaglandin, 15-deoxy-Delta12,14-prostaglandin J2. On exposure to 15-deoxy-Delta12,14-prostaglandin J2, the dissociation of Nrf2 from Keap1 occurred and this was dependent on the modification of thiols in Keap1. This mechanism appears to encompass other electrophilic lipids, since 15-A(2t)-isoprostane and the lipid aldehyde 4-hydroxynonenal were also shown to modify Keap1 and activate ARE. We propose that activation of ARE through this mechanism will have a major impact on inflammatory situations such as atherosclerosis, in which both enzymic as well as non-enzymic formation of electrophilic lipid oxidation products are increased

    Evidence for oxygen as the master regulator of the responsiveness of soluble guanylate cyclase and cytochrome c oxidase to nitric oxide

    No full text
    Haem is used as a versatile receptor for redox active molecules; most notably NO (nitric oxide) and oxygen. Three haem-containing proteins, myoglobin, haemoglobin and cytochrome c oxidase, are now known to bind NO, and in all these cases competition with oxygen plays an important role in the biological outcome. NO also binds to the haem group of sGC (soluble guanylate cyclase) and initiates signal transduction through the formation of cGMP in a process that is oxygen-independent. From biochemical studies, it has been shown that sGC is substantially more sensitive to NO than is cytochrome c oxidase, but a direct comparison in a cellular setting under various oxygen levels has not been reported previously. In this issue of the Biochemical Journal, Cadenas and co-workers reveal how oxygen can act as the master regulator of the relative sensitivity of the cytochrome c oxidase and sGC signalling pathways to NO. These findings have important implications for our understanding of the interplay between NO and oxygen in both physiology and the pathology of diseases associated with hypoxia

    Redox Regulation of Soluble Epoxide Hydrolase by 15-Deoxy-Delta-Prostaglandin J(2) Controls Coronary Hypoxic Vasodilation

    No full text
    Rationale: 15-Deoxy-{delta}-prostaglandin (15d-PG)J(2) is an electrophilic oxidant that dilates the coronary vasculature. This lipid can adduct to redox active protein thiols to induce oxidative posttranslational modifications that modulate protein and tissue function. Objective: To investigate the role of oxidative protein modifications in 15d-PGJ(2)-mediated coronary vasodilation and define the distal signaling pathways leading to enhanced perfusion. Methods and Results: Proteomic screening with biotinylated 15d-PGJ(2) identified novel vascular targets to which it adducts, most notably soluble epoxide hydrolase (sEH). 15d-PGJ(2) inhibited sEH by specifically adducting to a highly conserved thiol (Cys521) adjacent to the catalytic center of the hydrolase. Indeed a Cys521Ser sEH "redox-dead" mutant was resistant to 15d-PGJ(2)-induced hydrolase inhibition.15d-PGJ(2) dilated coronary vessels and a role for hydrolase inhibition was supported by 2 structurally different sEH antagonists each independently inducing vasorelaxation. Furthermore, 15d-PGJ(2) and sEH antagonists also increased coronary effluent epoxyeicosatrienoic acids consistent with their vasodilatory actions. Indeed 14,15-EET alone induced relaxation and 15d-PGJ(2)-mediated vasodilation was blocked by the EET receptor antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE). Additionally, the coronary vasculature of sEH-null mice was basally dilated compared to wild-type controls and failed to vasodilate in response to 15d-PGJ(2). Coronary vasodilation to hypoxia in wild-types was accompanied by 15d-PGJ(2) adduction to and inhibition of sEH. Consistent with the importance of hydrolase inhibition, sEH-null mice failed to vasodilate during hypoxia. Conclusions: This represents a new paradigm for the regulation of sEH by an endogenous lipid, which is integral to the fundamental physiological response of coronary hypoxic vasodilation
    corecore