18 research outputs found

    Structural uncertainty of time-migrated seismic images

    Get PDF
    AbstractStructural information in seismic images is uncertain. The main cause of this uncertainty is uncertainty in velocity estimation. We adopt the technique of velocity continuation for estimating velocity uncertainties and corresponding structural uncertainties in time-migrated images. Data experiments indicate that structural uncertainties can be significant even when both structure and velocity variations are mild

    Abstract P-43: Effect of Glucocerebrosidase Dysfunction on the Pool of Plasma Exosomes of Patients with Gaucher Disease

    Get PDF
    Background: Extracellular vesicles (EVs) are small membrane vesicles released from different types of cells. EVs are found in many human biological fluids. Exosomes are a subtype of EVs that are released by the fusion of multivesicular bodies with the plasma membrane. This type of vesicles is characterized by specific exosomal markers. Exosomes extracted from peripheral body liquids could have specific properties associated with different physiological conditions as well as human disorders, including neurodegenerative diseases. Gaucher disease (GD) – is the most common form of lysosomal storage disorders caused by mutations in the glucocerebrosidase (GBA) gene. Lysosome functionality is critical for the regulation of extracellular vesicle secretion and content. In model animals, the inhibition of glucocerebrosidase has been shown to increase the secretion of extracellular vesicles in brain tissues. Amount evaluation of EVs and their size in the biological fluids of patients with GD has not been early performed; therefore, it is unknown whether lysosomal dysfunction found in GD patients influences the plasma pool of EVs. The aim of this study was to evaluate the amount of blood plasma EVs in patients with GD and their characterization for morphology and size. Methods: EVs were isolated from the blood plasma of 8 GD patients and 8 controls by ultracentrifugation, and were characterized using cryo-electron microscopy (cryo-EM), nanoparticle tracking analysis (NTA), and dynamic light scattering (DLS). Also, the presence of exosomal markers CD9, CD63, CD81, and HSP70 was analyzed by flow cytometry and western blot. Results: Here, it was first shown an increased proportion of exosome fraction in EVs from plasma of GD patients compared to controls by DLS and cryo-EM (p<0.001) that was confirmed by mode size detected by NTA (p<0.02). Moreover, an increased number of double and multilayer vesicles in plasma EVs from GD patients was demonstrated by cryo-EM. We also detected an increase in the expression of exosomal markers on the surface of vesicles from the blood plasma of patients with GD compared to controls. Conclusion: Here, we firstly report that the exosomes obtained from the blood plasma of GD patients have a larger size and altered morphology. Thus, we have shown that lysosomal dysfunction in GD patients leads to a striking alteration of blood plasma extracellular vesicle pool

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    diffractions

    No full text
    Poststack velocity analysis by separation and imaging of seismi

    Extracellular Particles as Carriers of Cholesterol Not Associated with Lipoproteins

    No full text
    Exosomes and exomeres are the smallest microparticles ranging from 20 to 130 nm in diameter. They are found in almost all biological fluids. Exosomes and exomeres are of considerable interest since they can be involved in intercellular signaling and are biological markers of the state of cells, which can be used for diagnostics. The nomenclature of exosomes remains poorly developed. Most researchers try to classify them based on the mode of formation, physicochemical characteristics, and the presence of tetrasporin markers CD9, CD63, and CD81. The data presented in this work show that although exomeres carry tetrasporin biomarkers, they differ from exosomes strongly in lipid composition, especially in cholesterol content. The production of exomeres by cells is associated with the synthesis of cholesterol in cells and is expressed or suppressed by regulators of the synthesis of mevalonate, an intermediate product of cholesterol metabolism. In addition, the work shows that the concentration of extracellular particles in the body correlates with the concentration of cholesterol in the plasma, but weakly correlates with the concentration of cholesterol in lipoproteins. This suggests that not all plasma cholesterol is associated with lipoproteins, as previously thought

    Biomechanical Properties of Blood Plasma Extracellular Vesicles Revealed by Atomic Force Microscopy

    No full text
    While extracellular vesicles (EVs) are extensively studied by various practical applications in biomedicine, there is still little information on their biomechanical properties due to their nanoscale size. We identified isolated blood plasma vesicles that carried on biomarkers associated with exosomes and exomeres and applied atomic force microscopy (AFM) to study them at single particle level in air and in liquid. Air measurements of exosomes revealed a mechanically indented internal cavity in which highly adhesive sites were located. In contrast, the highly adhesive sites of exomeres were located at the periphery and the observed diameter of the particles was ~35 nm. In liquid, the reversible deformation of the internal cavity of exosomes was observed and a slightly deformed lipid bi-layer was identified. In contrast, exomeres were not deformed and their observed diameter was ~16 nm. The difference in diameters might be associated with a higher sorption of water film in air. The parameters we revealed correlated with the well-known structure and function for exosomes and were observed for exomeres for the first time. Our data provide a new insight into the biomechanical properties of nanoparticles and positioned AFM as an exclusive source of in situ information about their biophysical characteristics

    Memorials

    No full text
    corecore