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Structural information in seismic images is uncertain. Themain cause of this uncertainty is uncertainty in velocity
estimation. We adopt the technique of velocity continuation for estimating velocity uncertainties and corre-
sponding structural uncertainties in time-migrated images. Data experiments indicate that structural uncer-
tainties can be significant even when both structure and velocity variations are mild.
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1. Introduction

The usual outcome of seismic data processing is an image of the sub-
surface (Yilmaz, 2001). In the conventional data analysis workflow, the
image is passed to the seismic interpreter, who makes geological inter-
pretation, often by extracting structural information, such as positions
of horizons and faults in the image. Hidden in this process is the fact
that structural information is fundamentally uncertain, mainly because
of uncertainties in estimating seismic velocity parameters, which are re-
quired for imaging. Apart from the trivial case of perfectly flat seismic
reflectors, which are positioned correctly in time even when incorrect
stacking or migration velocities are used, seismic images can be and
usually are structurally distorted because of inevitable errors in velocity
estimation (Glogovsky et al., 2009).

Understanding and quantifying uncertainty in geophysical informa-
tion can be crucially important for resource exploration (Caers, 2011).
The issue of structural uncertainty in seismic images was analyzed pre-
viously by (Pon and Lines, 2005; Thore et al., 2002). Tura and Hanitzsch
(2001) studied the impact of velocity uncertainties on migrated images
and AVO attributes. Bube et al. (2004a,b) studied the influence of veloc-
ity and anisotropy uncertainties on structural uncertainties.

In this paper, we propose a constructive procedure for estimating
the degree of structural uncertainty in seismic images obtained by
prestack timemigration. The basis for our approach is themethod of ve-
locity continuation (Burnett and Fomel, 2011; Fomel, 1994, 2003a,b;
Hubral et al., 1996), which constructs seismic images by an explicit con-
tinuation in migration velocity. Velocity continuation generalizes the
ghts reserved.
earlier ideas of residual and cascaded migrations (Larner and Beasley,
1987; Rocca and Salvador, 1982; Rothman et al., 1985). In addition to
generating accurate time-migration images, it provides a direct access
to measuring the structural dependence (sensitivity) of these images
on migration velocities. We define structural uncertainty as a product
of velocity picking uncertainty and structural sensitivity.

We use a simple data example to illustrate our approach and to
show that structural uncertainty can be significant even when both
structure and velocity variations are mild. Although the proposed
approach is directly applicable only to prestack time migration, it
can be extended in principle to prestack depth migration using
velocity-ray approaches for extending the velocity continuation con-
cept (Adler, 2002; Duchkov and De Hoop, 2009; Iversen, 2006).

2. Velocity continuation and structural sensitivity

Velocity continuation is defined as the process of image transforma-
tionwith changes inmigration velocity (Fomel, 1994, 2003b). Its output
is equivalent to the output of repeatedmigrations with different migra-
tion velocities (Yilmaz et al., 2001) but produced more efficiently by
using propagation of images in velocity (Hubral et al., 1996). If we de-
note the output of velocity continuation as C(t,x,v), where t and x are
time-migration coordinates and v is the migration velocity, the time-
migrated image is simply

I t; xð Þ ¼ C t; x; vM t; xð Þð Þ; ð1Þ

where vM(t,x) is the picked migration velocity. Fig. 1 shows the velocity
continuation cube C(t,x,v) generated from a benchmark 2-D dataset
from the Gulf of Mexico (Claerbout, 2005). Migration velocity vM(t,x)
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Fig. 1. Velocity continuation cube for prestack time migration of the Gulf of Mexico
dataset.

Fig. 3. Seismic prestack time-migration image generated by velocity continuation.
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picked from the semblance analysis is shown in Fig. 2. The velocity var-
iations reflect a dominantly vertical gradient typical for the Gulf of
Mexico and only mild lateral variations, which justifies the use of
prestack time migration. The corresponding migration image I(t,x) is
shown in Fig. 3 and exhibits mild, nearly-horizontal reflectors and sed-
imentary structures.

The structural sensitivity of an image can be described through de-
rivatives ∂t/∂v and ∂x/∂v, which correspond to slopes of events in the
C(t,x,v) volume evaluated at v = vM(t,x). These slopes are easy to
measure experimentally from the C(t,x,vM) volume, using, for example,
the plane-wave destruction algorithm (Chen et al., 2013a,b; Fomel,
2002). Fig. 4 shows one common-image gather G(t,v) = C(t,x0,v) for
x0 = 10 km and the time slice S(x,v) = C(t0,x,v) for t0 = 2 s. Measur-
ing the slope of events ∂t/∂v in this gather and evaluating it at the picked
migration velocity produces the slope

pt t; xð Þ ¼ ∂t
∂v jv¼vM t;xð Þ

: ð2Þ
Fig. 2. Migration velocity picked from velocity continuation.

b

Fig. 4. Common-image gather (a) and time slice (b) from velocity continuationwith over-
laid time-migration velocity.
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Wemeasure the slope px(t,x) analogously by evaluating local slopes
in time slices of constant t:

px t; xð Þ ¼ ∂x
∂v jv¼vM t;xð Þ

: ð3Þ

Fig. 5 shows the estimated pt and px, which comprise the structural
sensitivity of our image.

Theoretically, structural sensitivity can be inferred from the zero-
offset velocity ray equations (Chun and Jacewitz, 1981; Fomel, 2003b)

dt
dv

¼ vMtt
2
x ¼ t

vM
tan2θ; ð4Þ

dx
dv

¼ −2vMttx ¼ −2t
t
vM

tan2θ; ð5Þ

where tx corresponds to the slope of the reflector, and θ is the reflector
dip angle. According to Eqs. (4)–(5), the reflector dip is the dominant
factor in structural sensitivity.
a

b

Fig. 5. Estimated structural sensitivity in time (a) and lateral position (b) with respect to
velocity.
3. Uncertainty in velocity picking

Fig. 6(a) shows a semblance scan produced in the process of velocity
continuation. A common procedure in migration velocity analysis is
picking a velocity trend from the semblance, either manually or auto-
matically. In this example, we use automatic pickingwith the algorithm
described by (Fomel, 2009).

While picking may select the most probable velocity function, its
probability is less than 100%. If we view normalized semblance as a
probability distribution and determine a confidence interval corre-
sponding roughly to one standard deviation, it provides an approximate
range of uncertainty in velocity determination. This range is shown in
Fig. 6(b) and computed according to

δv t; xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZvmax

vmin

v−vM t; xð Þ½ �2S t; x; vð Þdv

Zvmax

vmin

S t; x; vð Þdv

vuuuuuuuuuut
; ð7Þ
a

b

Fig. 6. Velocity scan at 10 km image gather. The curve in (a) corresponds to the automat-
ically picked velocity trend. The curves in (b) identify an approximate range of velocity un-
certainty around the picked trend.



Fig. 7. Estimated structural uncertainty in the seismic image from Fig. 3, displayed as
displacements.
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where S(t,x,v) is the semblance volume that corresponds to C(t,x,v), and
[vmin,vmax] is the full range of velocities. The interpretation of semblance
picks as probability distributions is heuristic but helps in quantifying
uncertainties in velocity picking.

4. Structure uncertainty

Putting structural sensitivity and velocity uncertainty together, we
can define structural uncertainty simply as their product:

δt ¼ ∂t
∂v δv; ð8Þ

δx ¼ ∂x
∂v δv: ð9Þ

The uncertainty {δt,δx} is themain output of our study. It is shown as
small line segments in Fig. 7 and as uncertainty in horizons in Fig. 8. The
Fig. 8. Estimated structural uncertainty in the seismic image from Fig. 3, displayed as
horizon uncertainties.
estimated uncertainty varies inside the image space and generally in-
creases with depth. It is surprisingly large, given the mild variations in
structure and velocity. We believe that, when making quantitative esti-
mates related to structural interpretation, it is important to take this
kind of uncertainty into account.

When converting seismic images from time to depth, it is also im-
portant to realize that the time-to-depth conversion itself is a mathe-
matically ill-posed problem (Cameron et al., 2007) and has its own
significant uncertainties.

5. Conclusions

We have estimated structural uncertainty in seismic time-domain
images simultaneously with performing prestack time migration. To ac-
complish this task, we projected the uncertainty in migration velocity
picking into the structural uncertainty bymeasuring the structural sensi-
tivity of seismic images to velocity. The lattermeasure is provided by ve-
locity continuation,which serves both as an imaging tool and as a tool for
sensitivity analysis. Field data examples show that structural uncer-
tainties can be significant even in the case ofmild structures and slowve-
locity variations. Taking these uncertainties into account should improve
the practice of seismic structural interpretation by making it more com-
pliant with risk-management assessment in reservoir characterization.
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