3,139 research outputs found

    Writing Reusable Digital Geometry Algorithms in a Generic Image Processing Framework

    Full text link
    Digital Geometry software should reflect the generality of the underlying mathe- matics: mapping the latter to the former requires genericity. By designing generic solutions, one can effectively reuse digital geometry data structures and algorithms. We propose an image processing framework focused on the Generic Programming paradigm in which an algorithm on the paper can be turned into a single code, written once and usable with various input types. This approach enables users to design and implement new methods at a lower cost, try cross-domain experiments and help generalize resultsComment: Workshop on Applications of Discrete Geometry and Mathematical Morphology, Istanb : France (2010

    Sources, Dangers and Treatments of Oily Soil Pollutants in Iraq

    Get PDF
    Oil pollution presents significant risks to living organism and human health because it can alter the ecosystem in rivers, seas, oceans, and pollutes air and soil. Oil, for example, can even reduce the efficiency of drinking water plants. Iraq suffers a lot from oil pollution as a result of wars that not only damage the oil infrastructures but also cause loss of thousand hectare of agriculture lands. In addition, oil pollution become primary factor that contribute to the electricity, fuel shortage and traffic jam problems. Oil pollution can be easily found in many parts of Iraq, even in main streets, houses and gardens due to the residents mismanagement and misuse of oily products. Therefore, the aim of this paper is to focus in detail about the sources and dangers of oil pollution on the environment and soil, as well as to provide some suggestions and measurements that can help in limiting the impact of oil pollution in Iraq

    Evolution of the Dust Coma in Comet 67P/Churyumov-Gerasimenko Before 2009 Perihelion

    Full text link
    Comet 67P/Churyumov-Gerasimenko is the main target of ESA's Rosetta mission and will be encountered in May 2014. As the spacecraft shall be in orbit the comet nucleus before and after release of the lander {\it Philae}, it is necessary necessary to know the conditions in the coma. Study the dust environment, including the dust production rate and its variations along its preperihelion orbit. The comet was observed during its approach to the Sun on four epochs between early-June 2008 and mid-January 2009, over a large range of heliocentric distances that will be covered by the mission in 2014. An anomalous enhancement of the coma dust density was measured towards the comet nucleus. The scalelength of this enhancement increased with decreasing heliocentric distance of the comet. This is interpreted as a result of an unusually slow expansion of the dust coma. Assuming a spherical symmetric coma, the average amount of dust as well as its ejection velocity have been derived. The latter increases exponentially with decreasing heliocentric distance (\rh), ranging from about 1 m/s at 3 AU to about 25-35 m/s at 1.4 AU. Based on these results we describe the dust environment at those nucleocentric distances at which the spacecraft will presumably be in orbit. Astronomy and Astrophysics, in pressComment: 5 pages, 4 figure

    Hubble Space Telescope Observations of Comet 9P/Tempel 1 during the Deep Impact Encounter

    Get PDF
    We report on the Hubble Space Telescope program to observe periodic comet 9P/Tempel 1 in conjunction with NASA's Deep Impact mission. Our objectives were to study the generation and evolution of the coma resulting from the impact and to obtain wide-band images of the visual outburst generated by the impact. Two observing campaigns utilizing a total of 17 HST orbits were carried out: the first occurred on 2005 June 13-14 and fortuitously recorded the appearance of a new, short-lived fan in the sunward direction on June 14. The principal campaign began two days before impact and was followed by contiguous orbits through impact plus several hours and then snapshots one, seven, and twelve days later. All of the observations were made using the Advanced Camera for Surveys (ACS). For imaging, the ACS High Resolution Channel (HRC) provides a spatial resolution of 36 km (16 km/pixel) at the comet at the time of impact. Baseline images of the comet, made prior to impact, photometrically resolved the comet's nucleus. The derived diameter, 6.1 km, is in excellent agreement with the 6.0 +/- 0.2 km diameter derived from the spacecraft imagers. Following the impact, the HRC images illustrate the temporal and spatial evolution of the ejecta cloud and allow for a determination of its expansion velocity distribution. One day after impact the ejecta cloud had passed out of the field-of-view of the HRC.Comment: 15 pages, 14 postscript figures. Accepted for publication in Icarus special issue on Deep Impac

    Refurbishing Voyager 1 & 2 Planetary Radio Astronomy (PRA) Data

    Full text link
    Voyager/PRA (Planetary Radio Astronomy) data from digitized tapes archived at CNES have been reprocessed and recalibrated. The data cover the Jupiter and Saturn flybys of both Voyager probes. We have also reconstructed goniopolarimetric datasets (flux and polarization) at full resolution. These datasets are currently not available to the scientific community, but they are of primary interest for the analysis of the Cassini data at Saturn, and the Juno data at Jupiter, as well as for the preparation of the JUICE mission. We present the first results derived from the re-analysis of this dataset.Comment: Accepted manuscript for PRE8 (Planetary Radio Emission VIII conference) proceeding

    Two Gap State Density in MgB2_{2}: A True Bulk Property or A Proximity Effect?

    Full text link
    We report on the temperature dependence of the quasiparticle density of states (DOS) in the simple binary compound MgB2 directly measured using scanning tunneling microscope (STM). To achieve high quality tunneling conditions, a small crystal of MgB2 is used as a tip in the STM experiment. The ``sample'' is chosen to be a 2H-NbSe2 single crystal presenting an atomically flat surface. At low temperature the tunneling conductance spectra show a gap at the Fermi energy followed by two well-pronounced conductance peaks on each side. They appear at voltages VS≃±3.8_{S}\simeq \pm 3.8 mV and VL≃±7.8_{L}\simeq \pm 7.8 mV. With rising temperature both peaks disappear at the Tc of the bulk MgB2, a behavior consistent with the model of two-gap superconductivity. The explanation of the double-peak structure in terms of a particular proximity effect is also discussed.Comment: 4 pages, 3 figure

    Millimetre continuum observations of comet C/2009 P1 (Garradd)

    Full text link
    Little is known about the physical properties of the nuclei of Oort cloud comets. Measuring the thermal emission of a nucleus is one of the few means for deriving its size and constraining some of its thermal properties. We attempted to measure the nucleus size of the Oort cloud comet C/2009 P1 (Garradd). We used the Plateau de Bure Interferometer to measure the millimetric thermal emission of this comet at 157 GHz (1.9 mm) and 266 GHz (1.1 mm). Whereas the observations at 266 GHz were not usable due to bad atmospheric conditions, we derived a 3-sigma upper limit on the comet continuum emission of 0.41 mJy at 157 GHz. Using a thermal model for a spherical nucleus with standard thermal parameters, we found an upper limit of 5.6 km for the radius. The dust contribution to our signal is estimated to be negligible. Given the water production rates measured for this comet and our upper limit, we estimated that Garradd was very active, with an active fraction of its nucleus larger than 50%.Comment: Accepted for publication in Astronomy & Astrophysics. 5 pages, 2 figure
    • …
    corecore