300 research outputs found
Design of InGaAs/InP 1.55μm vertical cavity surface emitting lasers
International audienceThe design of an electrically pumped InGaAs quantum well based vertical cavity surface emitting laser (VCSEL) on InP substrate is presented. Such optically pumped VCSELs have already been demonstrated. To design electrically pumped VCSEL, three simulations steps are needed: optical simulation gives access to the electric field repartition, to design the active zone and the Bragg mirrors. Thermal simulation is helpful to design metallic contacts while the energy band diagram is obtained by electrical simulation to design the buried tunnel junction useful for carrier injection. All these simulations are compared to experiment
Comparative Effects of University of Wisconsin and Euro-Collins Solutions on Pulmonary Mitochondrial Function after Ischemia and Reperfusion
peer reviewedBACKGROUND: The aim of this study was to compare the effects of Euro-Collins and University of Wisconsin solutions on pulmonary mitochondrial function after cold ischemia and subsequent warm reperfusion. METHODS: Seventeen pigs underwent lung harvesting after classical lung flush with either University of Wisconsin or Euro-Collins solutions. The mitochondria were isolated from fresh swine lungs, from swine lungs subjected to 24 hr of cold ischemia, and from swine lungs subjected to 24 hr of ischemia followed by 30 min of subsequent ex vivo reperfusion at 37 degrees C with Krebs-Henseleit buffer solution and air ventilation. Mitochondrial oxidative phosphorylation parameters were determined in isolated mitochondria by in vitro measurement of oxygen consumption rates. During reperfusion, the lung function was assessed by the pulmonary aerodynamic parameters and the pulmonary vascular resistance. RESULTS: Relative to controls, mitochondria submitted to cold ischemia showed an alteration in the oxidoreductase activities of the respiratory chain. However, the yield of oxidative phosphorylation was conserved. After reperfusion, pulmonary mitochondria underwent a significant worsening in the oxidoreductase activities of the respiratory chain, and a decrease in the respiratory control and the efficiency of oxidative phosphorylation. Meanwhile, the reperfused lungs showed evidence of early dysfunction, assessed by the aerodynamic parameters and pulmonary vascular resistance. In this model, there was no advantage of University of Wisconsin solution over Euro-Collins solution. CONCLUSIONS: The mild mitochondrial alterations after cold ischemia were not sufficient to explain the limited tolerance of lung to ischemia. After reperfusion, the mitochondrial damage was more severe and could be involved in the posttransplant lung dysfunction
Characterization of InAs quantum wires on (001) InP: toward the realization of VCSEL structures with a stabilized polarization
International audienceVertical cavity surface emitting lasers (VCSELs) operating at 1.55-µm are of great interests in optical telecommunication applications. Their circular, spectral and spatial single mode laser beam is essential points for an efficient fiber coupling and high frequency modulation. Moreover, their low-cost production and the possibility to test each laser directly on the wafer represent great advantages for production applications. In contrast with edge emitting lasers, VCSEL present an important polarization instability, which may increase the bit error rate in data transmission. Different solutions have been proposed for controlling the polarization, from patterning the output mirror or by using a birefringent material on top of the mirror, which do complicate the device technology. In this contribution, we propose to use a gain material presenting an important polarization anisotropy like quantum wires in order to fix the polarization of the emitting VCSEL
InAs quantum wires on InP substrate for VCSEL applications
International audienceQuantum dash based vertical cavity surface emitting lasers (VCSEL) on InP substrate are presented. Single and close stacking layers were successfully grown with molecular beam epitaxy. Optimized quantum dash layers exhibit a strong polarized 1.55 µm photoluminescence along the [1-10] crystallographic axis. Continuous wave laser emission is demonstrated at room temperature for the first time on a quantum dash VCSEL structure on InP susbtrate. The quantum dash VCSEL laser polarization appears stable on the whole sample and with excitation, no switching is observed. Its polarization is mainly oriented along [1-10], an extinction coefficient of 30 dB is measured. Those preliminary results demonstrate the interests of quantum dashes in the realization of controlled and stable polarization VCSEL device
Genomic Diversity of the Ostreid Herpesvirus Type 1 Across Time and Location and Among Host Species
The mechanisms underlying virus emergence are rarely well understood, making the appearance of outbreaks largely unpredictable. This is particularly true for pathogens with low per-site mutation rates, such as DNA viruses, that do not exhibit a large amount of evolutionary change among genetic sequences sampled at different time points. However, whole-genome sequencing can reveal the accumulation of novel genetic variation between samples, promising to render most, if not all, microbial pathogens measurably evolving and suitable for analytical techniques derived from population genetic theory. Here, we aim to assess the measurability of evolution on epidemiological time scales of the Ostreid herpesvirus 1 (OsHV-1), a double stranded DNA virus of which a new variant, OsHV-1 μVar, emerged in France in 2008, spreading across Europe and causing dramatic economic and ecological damage. We performed phylogenetic analyses of heterochronous (n = 21) OsHV-1 genomes sampled worldwide. Results show sufficient temporal signal in the viral sequences to proceed with phylogenetic molecular clock analyses and they indicate that the genetic diversity seen in these OsHV-1 isolates has arisen within the past three decades. OsHV-1 samples from France and New Zealand did not cluster together suggesting a spatial structuration of the viral populations. The genome-wide study of simple and complex polymorphisms shows that specific genomic regions are deleted in several isolates or accumulate a high number of substitutions. These contrasting and non-random patterns of polymorphism suggest that some genomic regions are affected by strong selective pressures. Interestingly, we also found variant genotypes within all infected individuals. Altogether, these results provide baseline evidence that whole genome sequencing could be used to study population dynamic processes of OsHV-1, and more broadly herpesviruses
Cleaved-facet violet laser diodes with lattice-matched Al0.82In0.18N/GaN multilayers as n-cladding
Electrically injected, edge-emitting cleaved-facet violet laser diodes were realized using a 480 nm thick lattice matched Si doped Al0.82In0.18N/GaN multilayer as the cladding on the n-side of the waveguide. Far-field measurements verify strong mode confinement to the waveguide. An extra voltage is measured and investigated using separate mesa structures with a single AlInN insertion. This showed that the electron current has a small thermally activated shunt resistance with a barrier of 0.135 eV and a current which scales according to V-n, where n similar to 3 at current densities appropriate to laser operation. (C) 2011 American Institute of Physics. (doi:10.1063/1.3589974
Consequences of Cold and Warm Ischemia on Pulmonary Mitochondrial Respiratory Function
IN RECENT years, pulmonary transplantation has become the treatment of choice for several end-stage lung diseases, but remains limited by the scarcity of suitable donors and the lack of reliable prolonged method of lung preservation.1 Transplantation of lung 6 hours postharvest leads to an increased incidence of primary graft dysfunction, due in part to ischemic damage of pulmonary cell structure and metabolism, and to acute reperfusion injury. However, very little is known about the real mechanisms of pulmonary cell injuries before, during, and after lung transplantation.
During ischemia, the cytosolic and mitochondrial adenine nucleotide content falls,2,3 phospholipids are degraded, membrane permeabilities are increased, and the cytosolic levels of Na+, Ca2+ and phosphate are raised.4 Thus, cold and warm ischemia may induce cell dysfunctions and irreversible injuries responsible for necrosis. As mitochondia are believed to be the site of the determinants of irreversibility,5 the study of permanent oxidative phosphorylation damage after ischemia should be of great interest.
The aim of this present study was to investigate the consequences of warm and cold ischemia on the oxidative phosphorylation of isolated lung mitochondri
A Preliminary Study of Magnetosphere-Ionosphere-Thermosphere Coupling at Jupiter: Juno Multi-Instrument Measurements and Modeling Tools
The dynamics of the Jovian magnetosphere are controlled by the interplay of the planet's fast rotation, its main iogenic plasma source and its interaction with the solar wind. Magnetosphere-Ionosphere-Thermosphere (MIT) coupling processes controlling this interplay are significantly different from their Earth and Saturn counterparts. At the ionospheric level, they can be characterized by a set of key parameters: ionospheric conductances, electric currents and fields, exchanges of particles along field lines, Joule heating and particle energy deposition. From these parameters, one can determine (a) how magnetospheric currents close into the ionosphere, and (b) the net deposition/extraction of energy into/out of the upper atmosphere associated to MIT coupling. We present a new method combining Juno multi-instrument data (MAG, JADE, JEDI, UVS, JIRAM and Waves) and modeling tools to estimate these key parameters along Juno's trajectories. We first apply this method to two southern hemisphere main auroral oval crossings to illustrate how the coupling parameters are derived. We then present a preliminary statistical analysis of the morphology and amplitudes of these key parameters for eight among the first nine southern perijoves. We aim to extend our method to more Juno orbits to progressively build a comprehensive view of Jovian MIT coupling at the level of the main auroral oval
Common variation in PHACTR1 is associated with susceptibility to cervical artery dissection
Cervical artery dissection (CeAD), a mural hematoma in a carotid or vertebral artery, is a major cause of ischemic stroke in young adults although relatively uncommon in the general population (incidence of 2.6/100,000 per year). Minor cervical traumas, infection, migraine and hypertension are putative risk factors, and inverse associations with obesity and hypercholesterolemia are described. No confirmed genetic susceptibility factors have been identified using candidate gene approaches. We performed genome-wide association studies (GWAS) in 1,393 CeAD cases and 14,416 controls. The rs9349379[G] allele (PHACTR1) was associated with lower CeAD risk (odds ratio (OR) = 0.75, 95% confidence interval (CI) = 0.69-0.82; P = 4.46 × 10(-10)), with confirmation in independent follow-up samples (659 CeAD cases and 2,648 controls; P = 3.91 × 10(-3); combined P = 1.00 × 10(-11)). The rs9349379[G] allele was previously shown to be associated with lower risk of migraine and increased risk of myocardial infarction. Deciphering the mechanisms underlying this pleiotropy might provide important information on the biological underpinnings of these disabling conditions
- …