243 research outputs found

    Which Fuel?

    Get PDF
    PDF pages:

    Tractor Fuel Costs

    Get PDF
    PDF pages:

    Injection of photoelectrons into dense argon gas

    Full text link
    The injection of photoelectrons in a gaseous or liquid sample is a widespread technique to produce a cold plasma in a weakly--ionized system in order to study the transport properties of electrons in a dense gas or liquid. We report here the experimental results of photoelectron injection into dense argon gas at the temperatureT=142.6 K as a function of the externally applied electric field and gas density. We show that the experimental data can be interpreted in terms of the so called Young-Bradbury model only if multiple scattering effects due to the dense environment are taken into account when computing the scattering properties and the energetics of the electrons.Comment: 18 pages, 10 figures, figure nr. 10 has been redrawn, to be submitted to Plasma Sources Science and Technolog

    Flight Crew Alertness and Sleep Relative to Timing of In-Flight Rest Periods in Long-Haul Flights

    Get PDF
    BACKGROUND: In-flight breaks are used during augmented long-haul flight operations, allowing pilots a sleep opportunity. The U.S. Federal Aviation Administration duty and rest regulations restrict the pilot flying the landing to using the third rest break. It is unclear how effective these restrictions are on pilots’ ability to obtain sleep. We hypothesized there would be no difference in self-reported sleep, alertness, and fatigue between pilots taking the second vs. third rest breaks. METHODS: Pilots flying augmented operations in two U.S.-based commercial airlines were eligible for the study. Volunteers completed a survey at top-of-descent (TOD), including self-reported in-flight sleep duration, and Samn-Perelli fatigue and Karolinska Sleepiness Scale ratings. We compared the second to third rest break using noninferiority analysis. The influence of time of day (home-base time; HBT) was evaluated in 4-h blocks using repeated measures ANOVA. RESULTS: From 787 flights 500 pilots provided complete data. The second rest break was noninferior to the third break for self-reported sleep duration (1.5 6 0.7 h vs. 1.4 6 0.7 h), fatigue (2.0 6 1.0 vs. 2.9 6 1.3), and sleepiness (2.6 6 1.4 vs. 3.8 6 1.8) at TOD for landing pilots. Measures of sleep duration, fatigue, and sleepiness were influenced by HBT circadian time of day. DISCUSSION: We conclude that self-reported in-flight sleep, fatigue, and sleepiness from landing pilots taking the second in-flight rest break are equivalent to or better than pilots taking the third break. Our findings support providing pilots with choice in taking the second or third in-flight rest break during augmented operations

    Perspectives on fatigue in short-haul flight operations from US pilots: A focus group study

    Get PDF
    There are few studies investigating the impact of fatigue in short-haul flight operations conducted under United States (US) 14 Code of Federal Regulations Part 117 flight and duty limitations and rest requirements. In order to understand the fatigue factors unique to short-haul operations, we conducted a series of focus groups across four major commercial passenger airlines in the US. Ninety short-haul pilots were recruited through emails distributed by airline safety teams and labor representatives. Fourteen focus groups were conducted via an online conferencing platform in which participants were asked to identify short-haul schedules and operations that they felt: a) elevated fatigue, b) were not fatiguing, and c) were important to study. Data were collected anonymously and coded using conventional qualitative content analysis, with axial coding and summative analysis used to identify main themes and over-arching categories. The six fatigue factor categories identified were: circadian disruption, high workload, inadequate rest opportunity, schedule changes, regulation implementation and policy issues, and long sits. It appears that additional mitigation strategies may be needed to manage fatigue in short-haul operations beyond the current regulations. Future field studies of short-haul operations in the US should investigate the prevalence and impact of these factors

    Long-term survival in patients undergoing cardiac resynchronization therapy: the importance of performing atrio-ventricular junction ablation in patients with permanent atrial fibrillation

    Get PDF
    AIMS: To investigate the effects of cardiac resynchronization therapy (CRT) on survival in heart failure (HF) patients with permanent atrial fibrillation (AF) and the role of atrio-ventricular junction (AVJ) ablation in these patients. METHODS AND RESULTS: Data from 1285 consecutive patients implanted with CRT devices are presented: 1042 patients were in sinus rhythm (SR) and 243 (19%) in AF. Rate control in AF was achieved by either ablating the AVJ in 118 patients (AVJ-abl) or prescribing negative chronotropic drugs (AF-Drugs). Compared with SR, patients with AF were significantly older, more likely to be non-ischaemic, with higher ejection fraction, shorter QRS duration, and less often received ICD back-up. During a median follow-up of 34 months, 170/1042 patients in SR and 39/243 in AF died (mortality: 8.4 and 8.9 per 100 person-year, respectively). Adjusted hazard ratios were similar for all-cause and cardiac mortality [0.9 (0.57-1.42), P = 0.64 and 1.00 (0.60-1.66) P = 0.99, respectively]. Among AF patients, only 11/118 AVJ-abl patients died vs. 28/125 AF-Drugs patients (mortality: 4.3 and 15.2 per 100 person-year, respectively, P < 0.001). Adjusted hazard ratios of AVJ-abl vs. AF-Drugs was 0.26 [95% confidence interval (CI) 0.09-0.73, P = 0.010] for all-cause mortality, 0.31 (95% CI 0.10-0.99, P = 0.048) for cardiac mortality, and 0.15 (95% CI 0.03-0.70, P = 0.016) for HF mortality. CONCLUSION: Patients with HF and AF treated with CRT have similar mortality compared with patients in SR. In AF, AVJ ablation in addition to CRT significantly improves overall survival compared with CRT alone, primarily by reducing HF death

    Plants Modify Biological Processes to Ensure Survival following Carbon Depletion: A Lolium perenne Model

    Get PDF
    BACKGROUND: Plants, due to their immobility, have evolved mechanisms allowing them to adapt to multiple environmental and management conditions. Short-term undesirable conditions (e.g. moisture deficit, cold temperatures) generally reduce photosynthetic carbon supply while increasing soluble carbohydrate accumulation. It is not known, however, what strategies plants may use in the long-term to adapt to situations resulting in net carbon depletion (i.e. reduced photosynthetic carbon supply and carbohydrate accumulation). In addition, many transcriptomic experiments have typically been undertaken under laboratory conditions; therefore, long-term acclimation strategies that plants use in natural environments are not well understood. METHODOLOGY/PRINCIPAL FINDINGS: Perennial ryegrass (Lolium perenne L.) was used as a model plant to define whether plants adapt to repetitive carbon depletion and to further elucidate their long-term acclimation mechanisms. Transcriptome changes in both lamina and stubble tissues of field-grown plants with depleted carbon reserves were characterised using reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The RT-qPCR data for select key genes indicated that plants reduced fructan degradation, and increased photosynthesis and fructan synthesis capacities following carbon depletion. This acclimatory response was not sufficient to prevent a reduction (P<0.001) in net biomass accumulation, but ensured that the plant survived. CONCLUSIONS: Adaptations of plants with depleted carbon reserves resulted in reduced post-defoliation carbon mobilization and earlier replenishment of carbon reserves, thereby ensuring survival and continued growth. These findings will help pave the way to improve plant biomass production, for either grazing livestock or biofuel purposes

    Indirect interaction between two native thistles mediated by an invasive exotic floral herbivore

    Get PDF
    Spatial and temporal variation in insect floral herbivory is common and often important. Yet, the determinants of such variation remain incompletely understood. Using 12 years of flowering data and 4 years of biweekly insect counts, we evaluated four hypotheses to explain variation in damage by the Eurasian flower head weevil, Rhinocyllus conicus, to the native North American wavyleaf thistle, Cirsium undulatum. The four factors hypothesized to influence weevil impact were variations in climate, weevil abundance, phenological synchrony, and number of flower heads available, either on wavyleaf thistle or on the other co-occurring, acquired native host plant (Platte thistle, Cirsium canescens), or on both. Climate did not contribute significantly to an explanation of variation in R. conicus damage to wavyleaf thistle. However, climate did influence weevil synchrony with wavyleaf flower head initiation, and phenological synchrony was important in determining R. conicus oviposition levels on wavyleaf thistle. The earlier R. conicus was active, the less it oviposited on wavyleaf thistle, even when weevils were abundant. Neither weevil abundance nor availability of wavyleaf flower heads predicted R. conicus egg load. Instead, the strongest predictor of R. conicus egg load on wavyleaf thistle was the availability of flower heads on Platte thistle, the more common, earlier flowering native thistle in the sand prairie. Egg load on wavyleaf thistle decreased as the number of Platte thistle flower heads at a site increased. Thus, wavyleaf thistle experienced associational defense in the presence of flowering by its now declining native congener, Platte thistle. These results demonstrate that prediction of damage to a native plant by an exotic insect may require knowledge of both likely phenological synchrony and total resource availability to the herbivore, including resources provided by other nontarget native species
    corecore