33 research outputs found

    IceCube - the next generation neutrino telescope at the South Pole

    Get PDF
    IceCube is a large neutrino telescope of the next generation to be constructed in the Antarctic Ice Sheet near the South Pole. We present the conceptual design and the sensitivity of the IceCube detector to predicted fluxes of neutrinos, both atmospheric and extra-terrestrial. A complete simulation of the detector design has been used to study the detector's capability to search for neutrinos from sources such as active galaxies, and gamma-ray bursts.Comment: 8 pages, to be published with the proceedings of the XXth International Conference on Neutrino Physics and Astrophysics, Munich 200

    Results from the Antarctic Muon and Neutrino Detector Array (AMANDA)

    Full text link
    We show new results from both the older and newer incarnations of AMANDA (AMANDA-B10 and AMANDA-II, respectively). These results demonstrate that AMANDA is a functioning, multipurpose detector with significant physics and astrophysics reach. They include a new higher-statistics measurement of the atmospheric muon neutrino flux and preliminary results from searches for a variety of sources of ultrahigh energy neutrinos: generic point sources, gamma-ray bursters and diffuse sources producing muons in the detector, and diffuse sources producing electromagnetic or hadronic showers in or near the detector.Comment: Invited talk at the XXth International Conference on Neutrino Physics and Astrophysics (Neutrino 2002), Munich, Germany, May 25-30, 200

    Muon Track Reconstruction and Data Selection Techniques in AMANDA

    Full text link
    The Antarctic Muon And Neutrino Detector Array (AMANDA) is a high-energy neutrino telescope operating at the geographic South Pole. It is a lattice of photo-multiplier tubes buried deep in the polar ice between 1500m and 2000m. The primary goal of this detector is to discover astrophysical sources of high energy neutrinos. A high-energy muon neutrino coming through the earth from the Northern Hemisphere can be identified by the secondary muon moving upward through the detector. The muon tracks are reconstructed with a maximum likelihood method. It models the arrival times and amplitudes of Cherenkov photons registered by the photo-multipliers. This paper describes the different methods of reconstruction, which have been successfully implemented within AMANDA. Strategies for optimizing the reconstruction performance and rejecting background are presented. For a typical analysis procedure the direction of tracks are reconstructed with about 2 degree accuracy.Comment: 40 pages, 16 Postscript figures, uses elsart.st

    Sensitivity of the IceCube Detector to Astrophysical Sources of High Energy Muon Neutrinos

    Full text link
    We present the results of a Monte-Carlo study of the sensitivity of the planned IceCube detector to predicted fluxes of muon neutrinos at TeV to PeV energies. A complete simulation of the detector and data analysis is used to study the detector's capability to search for muon neutrinos from sources such as active galaxies and gamma-ray bursts. We study the effective area and the angular resolution of the detector as a function of muon energy and angle of incidence. We present detailed calculations of the sensitivity of the detector to both diffuse and pointlike neutrino emissions, including an assessment of the sensitivity to neutrinos detected in coincidence with gamma-ray burst observations. After three years of datataking, IceCube will have been able to detect a point source flux of E^2*dN/dE = 7*10^-9 cm^-2s^-1GeV at a 5-sigma significance, or, in the absence of a signal, place a 90% c.l. limit at a level E^2*dN/dE = 2*10^-9 cm^-2s^-1GeV. A diffuse E-2 flux would be detectable at a minimum strength of E^2*dN/dE = 1*10^-8 cm^-2s^-1sr^-1GeV. A gamma-ray burst model following the formulation of Waxman and Bahcall would result in a 5-sigma effect after the observation of 200 bursts in coincidence with satellite observations of the gamma-rays.Comment: 33 pages, 13 figures, 6 table

    Search for Supernova Neutrino-Bursts with the AMANDA Detector

    Full text link
    The core collapse of a massive star in the Milky Way will produce a neutrino burst, intense enough to be detected by existing underground detectors. The AMANDA neutrino telescope located deep in the South Pole ice can detect MeV neutrinos by a collective rate increase in all photo-multipliers on top of dark noise. The main source of light comes from positrons produced in the CC-reaction of anti-electron neutrinos on free protons \antinue + p \to e^+ + n. This paper describes the first supernova search performed on the full sets of data taken during 1997 and 1998 (215 days of live time) with 302 of the detector's optical modules. No candidate events resulted from this search. The performance of the detector is calculated, yielding a 70% coverage of the Galaxy with one background fake per year with 90% efficiency for the detector configuration under study. An upper limit at the 90% c.l. on the rate of stellar collapses in the Milky Way is derived, yielding 4.3 events per year. A trigger algorithm is presented and its performance estimated. Possible improvements of the detector hardware are reviewed.Comment: 20 pages, 14 figures. Submitted to Astroparticle Physic

    Palaeoenvironmental reconstructions based on geochemical parameters from annually laminated sediments of Sacrower See (northeastern Germany) since the 17th century

    No full text
    The history of hardwater lake Sacrower See (Brandenburg, northeastern Germany) was reconstructed back to the 17th century based on a multi-proxy study of five short sediment cores dated by varve chronology, Pb-210 and Cs-137 isotopes. We were able to distinguish three main phases: The lake was mesotrophic prior to the 1830s with an oxic hypolimnion. From the early 19th century on, delta C-13 of organic matter indicates that primary productivity starts to increase slowly. Between the 1830s and 1872, the lake went through a transition towards eutrophy. Low calcite contents in the homogeneous sediment are caused by dissolution connected to increasing primary productivity and growing importance of decomposition processes. After 1873, and accelerated since 1963, Sacrower See is characterised by growing nutrient input, and thus further increasing primary productivity. The lake is eutrophic, and decomposition of organic matter causes high oxygen consumption in the hypolimnion, which becomes regularly anoxic during thermal summer stratification. Biogenic varves are preserved in the sediment, characterised by layers of autochthonous, biochemically precipitated calcite crystals. In this study, we were able to demonstrate that Sacrower See is an example of exceptional slow increase of anthropogenically enhanced nutrient input, and of the imprint which these processes have on sediments of a hardwater lake

    Pines

    Get PDF
    Pinus is the most important genus within the Family Pinaceae and also within the gymnosperms by the number of species (109 species recognized by Farjon 2001) and by its contribution to forest ecosystems. All pine species are evergreen trees or shrubs. They are widely distributed in the northern hemisphere, from tropical areas to northern areas in America and Eurasia. Their natural range reaches the equator only in Southeast Asia. In Africa, natural occurrences are confined to the Mediterranean basin. Pines grow at various elevations from sea level (not usual in tropical areas) to highlands. Two main regions of diversity are recorded, the most important one in Central America (43 species found in Mexico) and a secondary one in China. Some species have a very wide natural range (e.g., P. ponderosa, P. sylvestris). Pines are adapted to a wide range of ecological conditions: from tropical (e.g., P. merkusii, P. kesiya, P. tropicalis), temperate (e.g., P. pungens, P. thunbergii), and subalpine (e.g., P. albicaulis, P. cembra) to boreal (e.g., P. pumila) climates (Richardson and Rundel 1998, Burdon 2002). They can grow in quite pure stands or in mixed forest with other conifers or broadleaved trees. Some species are especially adapted to forest fires, e.g., P. banksiana, in which fire is virtually essential for cone opening and seed dispersal. They can grow in arid conditions, on alluvial plain soils, on sandy soils, on rocky soils, or on marsh soils. Trees of some species can have a very long life as in P. longaeva (more than 3,000 years)
    corecore