62 research outputs found

    The Intentional Use of Service Recovery Strategies to Influence Consumer Emotion, Cognition and Behaviour

    Get PDF
    Service recovery strategies have been identified as a critical factor in the success of. service organizations. This study develops a conceptual frame work to investigate how specific service recovery strategies influence the emotional, cognitive and negative behavioural responses of . consumers., as well as how emotion and cognition influence negative behavior. Understanding the impact of specific service recovery strategies will allow service providers' to more deliberately and intentionally engage in strategies that result in positive organizational outcomes. This study was conducted using a 2 x 2 between-subjects quasi-experimental design. The results suggest that service recovery has a significant impact on emotion, cognition and negative behavior. Similarly, satisfaction, negative emotion and positive emotion all influence negative behavior but distributive justice has no effect

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003t0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    J/ψ polarization in p+p collisions at s=200 GeV in STAR

    Get PDF
    AbstractWe report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2<pT<6 GeV/c in p+p collisions at s=200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT, indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models

    Measurement Of Charge Multiplicity Asymmetry Correlations In High-energy Nucleus-nucleus Collisions At Snn =200 Gev

    Get PDF
    A study is reported of the same- and opposite-sign charge-dependent azimuthal correlations with respect to the event plane in Au+Au collisions at sNN=200 GeV. The charge multiplicity asymmetries between the up/down and left/right hemispheres relative to the event plane are utilized. The contributions from statistical fluctuations and detector effects were subtracted from the (co-)variance of the observed charge multiplicity asymmetries. In the mid- to most-central collisions, the same- (opposite-) sign pairs are preferentially emitted in back-to-back (aligned on the same-side) directions. The charge separation across the event plane, measured by the difference, Δ, between the like- and unlike-sign up/down-left/right correlations, is largest near the event plane. The difference is found to be proportional to the event-by-event final-state particle ellipticity (via the observed second-order harmonic v2obs), where Δ=[1.3±1.4(stat)-1.0+4.0(syst)]×10- 5+[3.2±0.2(stat)-0.3+0.4(syst)]×10-3v2obs for 20-40% Au+Au collisions. The implications for the proposed chiral magnetic effect are discussed. © 2014 American Physical Society.894NRF-2012004024; National Research FoundationArsene, I., (2005) Nucl. Phys. A, 757, p. 1. , (BRAHMS Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.02.130Back, B.B., (2005) Nucl. Phys. A, 757, p. 28. , (PHOBOS Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.084Adams, J., (2005) Nucl. Phys. A, 757, p. 102. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.085Adcox, K., (2005) Nucl. Phys. A, 757, p. 184. , (PHENIX Collaboration),. NUPABL 0375-9474 10.1016/j.nuclphysa.2005.03.086Lee, T.D., (1973) Phys. Rev. D, 8, p. 1226. , 0556-2821 10.1103/PhysRevD.8.1226Lee, T.D., Wick, G.C., (1974) Phys. Rev. D, 9, p. 2291. , 0556-2821 10.1103/PhysRevD.9.2291Morley, P.D., Schmidt, I.A., (1985) Z. Phys. C, 26, p. 627. , ZPCFD2 0170-9739 10.1007/BF01551807Kharzeev, D., Pisarski, R.D., Tytgat, M.H.G., (1998) Phys. Rev. Lett., 81, p. 512. , PRLTAO 0031-9007 10.1103/PhysRevLett.81.512Kharzeev, D., (2006) Phys. Lett. B, 633, p. 260. , PYLBAJ 0370-2693 10.1016/j.physletb.2005.11.075Kharzeev, D., Zhitnitsky, A., (2007) Nucl. Phys. A, 797, p. 67. , NUPABL 0375-9474 10.1016/j.nuclphysa.2007.10.001Fukushima, K., Kharzeev, D.E., Warringa, H.J., (2008) Phys. Rev. D, 78, p. 074033. , PRVDAQ 1550-7998 10.1103/PhysRevD.78.074033Kharzeev, D.E., McLerran, L.D., Warringa, H.J., (2008) Nucl. Phys. A, 803, p. 227. , NUPABL 0375-9474 10.1016/j.nuclphysa.2008.02.298Voloshin, S.A., (2004) Phys. Rev. C, 70, p. 057901. , PRVCAN 0556-2813 10.1103/PhysRevC.70.057901Abelev, B.I., (2009) Phys. Rev. Lett., 103, p. 251601. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.103.251601Abelev, B.I., (2010) Phys. Rev. C, 81, p. 054908. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.81.054908Abelev, B., (2013) Phys. Rev. Lett., 110, p. 012301. , (ALICE Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.110.012301Wang, Q., (2012), http://drupal.star.bnl.gov/STAR/theses/phd/quanwang, Ph.D. thesis, Purdue University, arXiv:1205.4638Ackermann, K.H., (2003) Nucl. Instrum. Methods A, 499, p. 624. , (STAR Collaboration),. NIMAER 0168-9002 10.1016/S0168-9002(02)01960-5Bieser, F.S., (2003) Nucl. Instrum. Methods A, 499, p. 766. , (STAR Collaboration),. NIMAER 0168-9002 10.1016/S0168-9002(02)01974-5Adler, C., (2003) Nucl. Instrum. Methods A, 499, p. 433. , NIMAER 0168-9002 10.1016/j.nima.2003.08.112Adams, J., (2004) Phys. Rev. Lett., 92, p. 112301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.92.112301Abelev, B.I., (2009) Phys. Rev. C, 79, p. 034909. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.79.034909Ackermann, K.H., (1999) Nucl. Phys. A, 661, p. 681. , (STAR Collaboration),. NUPABL 0375-9474 10.1016/S0375-9474(99)85117-3Anderson, M., (2003) Nucl. Instrum. Methods A, 499, p. 659. , NIMAER 0168-9002 10.1016/S0168-9002(02)01964-2Poskanzer, A.M., Voloshin, S.A., (1998) Phys. Rev. C, 58, p. 1671. , PRVCAN 0556-2813 10.1103/PhysRevC.58.1671Wang, G., (2005), http://drupal.star.bnl.gov/STAR/theses/ph-d/gang-wang, Ph.D. thesis, UCLAAdamczyk, L., (2012) Phys. Rev. Lett., 108, p. 202301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.108.202301Wang, F., (2010) Phys. Rev. C, 81, p. 064902. , PRVCAN 0556-2813 10.1103/PhysRevC.81.064902Pratt, S., Schlichting, S., Gavin, S., (2011) Phys. Rev. C, 84, p. 024909. , PRVCAN 0556-2813 10.1103/PhysRevC.84.024909Adams, J., (2005) Phys. Rev. Lett., 95, p. 152301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.95.152301Aggarwal, M.M., (2010) Phys. Rev. C, 82, p. 024912. , (STAR collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.82.024912Abelev, B.I., (2009) Phys. Rev. Lett., 102, p. 052302. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.102.052302Abelev, B.I., (2009) Phys. Rev. C, 80, p. 064912. , (STAR Collaboration),. PRVCAN 0556-2813 10.1103/PhysRevC.80.064912Abelev, B.I., (2010) Phys. Rev. Lett., 105, p. 022301. , (STAR Collaboration),. PRLTAO 0031-9007 10.1103/PhysRevLett.105.022301Agakishiev, H., (STAR Collaboration), arXiv:1010.0690Petersen, H., Renk, T., Bass, S.A., (2011) Phys. Rev. C, 83, p. 014916. , PRVCAN 0556-2813 10.1103/PhysRevC.83.014916Adamczyk, L., (2013) Phys. Rev. C, 88, p. 064911. , (STAR Collaboration),. 10.1103/PhysRevC.88.064911Asakawa, M., Majumder, A., Müller, B., (2010) Phys. Rev. C, 81, p. 064912. , PRVCAN 0556-2813 10.1103/PhysRevC.81.064912Bzdak, A., Koch, V., Liao, J., (2010) Phys. Rev. C, 81, pp. 031901R. , PRVCAN 0556-2813 10.1103/PhysRevC.81.031901Liao, J., Koch, V., Bzdak, A., (2010) Phys. Rev. C, 82, p. 054902. , PRVCAN 0556-2813 10.1103/PhysRevC.82.054902Ma, G.-L., Zhang, B., (2011) Phys. Lett. B, 700, p. 39. , PYLBAJ 0370-2693 10.1016/j.physletb.2011.04.057Voloshin, S.A., (2010) Phys. Rev. Lett., 105, p. 172301. , PRLTAO 0031-9007 10.1103/PhysRevLett.105.17230

    Fluctuations Of Charge Separation Perpendicular To The Event Plane And Local Parity Violation In S Nn = 200 Gev Au + Au Collisions At The Bnl Relativistic Heavy Ion Collider

    Get PDF
    Previous experimental results based on data (∼15×106 events) collected by the STAR detector at the BNL Relativistic Heavy Ion Collider suggest event-by-event charge-separation fluctuations perpendicular to the event plane in noncentral heavy-ion collisions. Here we present the correlator previously used split into its two component parts to reveal correlations parallel and perpendicular to the event plane. The results are from a high-statistics 200-GeV Au + Au collisions data set (57×106 events) collected by the STAR experiment. We explicitly count units of charge separation from which we find clear evidence for more charge-separation fluctuations perpendicular than parallel to the event plane. We also employ a modified correlator to study the possible P-even background in same- and opposite-charge correlations, and find that the P-even background may largely be explained by momentum conservation and collective motion. © 2013 American Physical Society.886NRF-2012004024; National Research FoundationLee, T.D., Yang, C.N., (1956) Phys. Rev., 104. , 1, 254. 0031-899X PHRVAO 10.1103/PhysRev.104.254Vafa, C., Witten, E., (1984) Phys. Rev. Lett., 53. , 2, 535. 0031-9007 PRLTAO 10.1103/PhysRevLett.53.535Lee, T.D., (1973) Phys. Rev. D, 8. , 3, 1226. 0556-2821 10.1103/PhysRevD.8.1226Lee, T.D., Wick, G.C., (1974) Phys. Rev. D, 9. , 4, 2291. 0556-2821 10.1103/PhysRevD.9.2291Kharzeev, D., Parity violation in hot QCD: Why it can happen, and how to look for it (2006) Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 633 (2-3), pp. 260-264. , DOI 10.1016/j.physletb.2005.11.075, PII S0370269305017430Kharzeev, D., Zhitnitsky, A., (2007) Nucl. Phys. A, 797. , 6, 67. 0375-9474 NUPABL 10.1016/j.nuclphysa.2007.10.001Kharzeev, D., McLerran, L.D., Warringa, H.J., (2008) Nucl. Phys. A, 803. , 7, 227. 0375-9474 NUPABL 10.1016/j.nuclphysa.2008.02.298Fukushima, K., Kharzeev, D.E., Warringa, H.J., (2008) Phys. Rev. D, 78. , 8, 074033. 1550-7998 PRVDAQ 10.1103/PhysRevD.78.074033Abelev, B.I., (2009) Phys. Rev. Lett., 103. , 9 (STAR Collaboration), 251601. 0031-9007 PRLTAO 10.1103/PhysRevLett.103. 251601Abelev, B.I., (2010) Phys. Rev. C, 81. , 10 (STAR Collaboration), 054908. 0556-2813 PRVCAN 10.1103/PhysRevC.81. 054908Abelev, B.I., (2013) Phys. Rev. Lett., 110. , 11 (ALICE Collaboration), 012301. 0031-9007 PRLTAO 10.1103/PhysRevLett. 110.012301Ackermann, K.H., Adams, N., Adler, C., Ahammed, Z., Ahmad, S., Allgower, C., Amonett, J., Harris, J.W., STAR detector overview (2003) Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 499 (2-3), pp. 624-632. , DOI 10.1016/S0168-9002(02)01960-5Adams, J., Aggarwal, M.M., Ahammed, Z., Amonett, J., Anderson, B.D., Arkhipkin, D., Averichev, G.S., Bai, Y., Directed flow in Au+Au collisions at sNN=62.4 GeV (2006) Physical Review C - Nuclear Physics, 73 (3), pp. 1-7. , http://oai.aps.org/oai?verb=GetRecord&Identifier=oai:aps.org: PhysRevC.73.034903&metadataPrefix=oai_apsmeta_2, DOI 10.1103/PhysRevC.73.034903, 034903Adamczyk, L., (2012) Phys. Rev. Lett., 108. , 14 (STAR Collaboration), 202301. 0031-9007 PRLTAO 10.1103/PhysRevLett. 108.202301Voloshin, S.A., Parity violation in hot QCD: How to detect it (2004) Physical Review C - Nuclear Physics, 70 (5), pp. 0579011-0579012. , DOI 10.1103/PhysRevC.70.057901, 057901Poskanzer, A.M., Voloshin, S.A., Methods for analyzing anisotropic flow in relativistic nuclear collisions (1998) Physical Review C - Nuclear Physics, 58 (3), pp. 1671-1678. , DOI 10.1103/PhysRevC.58.1671Ollitrault, J.-Y., Poskanzer, A.M., Voloshin, S.A., (2009) Phys. Rev. C, 80. , 17, 014904. 0556-2813 PRVCAN 10.1103/PhysRevC.80.014904Pratt, S., Schlichting, S., Gavin, S., (2011) Phys. Rev. C, 84. , 18, 024909. 0556-2813 PRVCAN 10.1103/PhysRevC.84.024909Schlichting, S., Pratt, S., (2011) Phys. Rev. C, 83. , 19, 014913. 0556-2813 PRVCAN 10.1103/PhysRevC.83.014913Selyuzhenkov, I., Voloshin, S., (2008) Phys. Rev. C, 77. , 20, 034904. 0556-2813 PRVCAN 10.1103/PhysRevC.77.034904Kisiel, A., (2006) Comput. Phys. Commun., 174. , 21, 669. 0010-4655 CPHCBZ 10.1016/j.cpc.2005.11.010Bzdak, A., Koch, V., Liao, J., (2011) Phys. Rev. C, 83. , 22, 014905. 0556-2813 PRVCAN 10.1103/PhysRevC.83.014905Adams, J., Aggarwal, M.M., Ahammed, Z., Amonett, J., Anderson, B.D., Arkhipkin, D., Averichev, G.S., Grebenyuk, O., Azimuthal anisotropy in Au+Au collisions at sNN=200GeV (2005) Physical Review C - Nuclear Physics, 72 (1), pp. 1-23. , http://oai.aps.org/oai/?verb=ListRecords&metadataPrefix= oai_apsmeta_2&set=journal:PRC:72, DOI 10.1103/PhysRevC.72.014904, 014904Ray, R.L., Longacre, R.S., 24, arXiv:nucl-ex/0008009 and private communicationKopylov, G.I., Podgoretsky, M.I., Kopylov, G.I., Podgoretsky, M.I., (1972) Sov. J. Nucl. Phys., 15. , 25a, 219 ()25b, Phys. Lett. B. 50, 472 (1974) 0370-2693 PYLBAJ 10.1016/0370-2693(74)90263-925c, Sov. J. Part. Nucl. 20, 266 (1989)Goldhaber, G., Goldhaber, S., Lee, W., Pais, A., (1960) Phys. Rev., 120. , 26, 325. 0031-899X PHRVAO 10.1103/PhysRev.120.32
    corecore