12 research outputs found

    Design and direct assembly of synthesized uracil-containing non-clonal DNA fragments into vectors by USER<sup>TM</sup> cloning

    Get PDF
    This protocol describes how to order and directly assemble uracil-containing non-clonal DNA fragments by uracil excision based cloning (USER cloning). The protocol was generated with the goal of making synthesized non-clonal DNA fragments directly compatible with USER(TM) cloning. The protocol is highly efficient and would be compatible with uracil-containing non-clonal DNA fragments obtained from any synthesizing company. The protocol drastically reduces time and handling between receiving the synthesized DNA fragments and transforming with vector and DNA fragment(s)

    Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications

    Get PDF
    The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential basis for further work, including macromolecular interaction studies and high-throughput drug screening. Here, we present the extensive catalog of a holistic SARS-CoV-2 protein preparation approach based on the consortium’s collective efforts. We provide protocols for the large-scale production of more than 80% of all SARS-CoV-2 proteins or essential parts of them. Several of the proteins were produced in more than one laboratory, demonstrating the high interoperability between NMR groups worldwide. For the majority of proteins, we can produce isotope-labeled samples of HSQC-grade. Together with several NMR chemical shift assignments made publicly available on covid19-nmr.com, we here provide highly valuable resources for the production of SARS-CoV-2 proteins in isotope-labeled form

    Identification and characterization of jasmonate transporters:The role of jasmonate efflux in plant defense and development

    No full text

    Herbivore feeding preference corroborates optimal defense theory for specialized metabolites within plants

    No full text
    Numerous plants protect themselves from attackers by using specialized metabolites. The biosynthesis of these deterrent, often toxic metabolites is costly, as their synthesis diverts energy and resources on account of growth and development. How plants diversify investments into growth and defense is explained by the optimal defense theory. The central prediction of the optimal defense theory is that plants maximize growth and defense by concentrating specialized metabolites in tissues that are decisive for fitness. To date, supporting physiological evidence relies on the correlation between plant metabolite presence and animal feeding preference. Here, we use glucosinolates as a model to examine the effect of changes in chemical defense distribution on feeding preference. Taking advantage of the uniform glucosinolate distribution in transporter mutants, we show that high glucosinolate accumulation in tissues important to fitness protects them by guiding larvae of a generalist herbivore to feed on other tissues. Moreover, we show that the mature leaves of Arabidopsis thaliana supply young leaves with glucosinolates to optimize defense against herbivores. Our study provides physiological evidence for the central hypothesis of the optimal defense theory and sheds light on the importance of integrating glucosinolate biosynthesis and transport for optimizing plant defense

    1H, 13C, and 15N backbone chemical shift assignments of the C-terminal dimerization domain of SARS-CoV-2 nucleocapsid protein

    No full text
    The current outbreak of the highly infectious COVID-19 respiratory disease is caused by the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2). To fight the pandemic, the search for promising viral drug targets has become a cross-border common goal of the international biomedical research community. Within the international Covid19-NMR consortium, scientists support drug development against SARS-CoV-2 by providing publicly available NMR data on viral proteins and RNAs. The coronavirus nucleocapsid protein (N protein) is an RNA-binding protein involved in viral transcription and replication. Its primary function is the packaging of the viral RNA genome. The highly conserved architecture of the coronavirus N protein consists of an N-terminal RNA-binding domain (NTD), followed by an intrinsically disordered Serine/Arginine (SR)-rich linker and a C-terminal dimerization domain (CTD). Besides its involvement in oligomerization, the CTD of the N protein (N-CTD) is also able to bind to nucleic acids by itself, independent of the NTD. Here, we report the near-complete NMR backbone chemical shift assignments of the SARS-CoV-2 N-CTD to provide the basis for downstream applications, in particular site-resolved drug binding studies
    corecore