19 research outputs found

    The multidrug-resistant PMEN1 pneumococcus is a paradigm for genetic success.

    Get PDF
    To access publisher´s full text version of this article. Please click on the hyperlink in Additional Links field.Streptococcus pneumoniae, also called the pneumococcus, is a major bacterial pathogen. Since its introduction in the 1940s, penicillin has been the primary treatment for pneumococcal diseases. Penicillin resistance rapidly increased among pneumococci over the past 30 years, and one particular multidrug-resistant clone, PMEN1, became highly prevalent globally. We studied a collection of 426 pneumococci isolated between 1937 and 2007 to better understand the evolution of penicillin resistance within this species. We discovered that one of the earliest known penicillin-nonsusceptible pneumococci, recovered in 1967 from Australia, was the likely ancestor of PMEN1, since approximately 95% of coding sequences identified within its genome were highly similar to those of PMEN1. The regions of the PMEN1 genome that differed from the ancestor contained genes associated with antibiotic resistance, transmission and virulence. We also revealed that PMEN1 was uniquely promiscuous with its DNA, donating penicillin-resistance genes and sometimes many other genes associated with antibiotic resistance, virulence and cell adherence to many genotypically diverse pneumococci. In particular, we describe two strains in which up to 10% of the PMEN1 genome was acquired in multiple fragments, some as long as 32 kb, distributed around the recipient genomes. This type of directional genetic promiscuity from a single clone to numerous unrelated clones has, to our knowledge, never before been described. These findings suggest that PMEN1 is a paradigm of genetic success both through its epidemiology and promiscuity. These findings also challenge the existing views about horizontal gene transfer among pneumococci

    The multidrug-resistant PMEN1 pneumococcus is a paradigm for genetic success

    Get PDF
    Background: Streptococcus pneumoniae, also called the pneumococcus, is a major bacterial pathogen. Since its introduction in the 1940s, penicillin has been the primary treatment for pneumococcal diseases. Penicillin resistance rapidly increased among pneumococci over the past 30 years, and one particular multidrug-resistant clone, PMEN1, became highly prevalent globally. We studied a collection of 426 pneumococci isolated between 1937 and 2007 to better understand the evolution of penicillin resistance within this species. Results: We discovered that one of the earliest known penicillin-nonsusceptible pneumococci, recovered in 1967 from Australia, was the likely ancestor of PMEN1, since approximately 95% of coding sequences identified within its genome were highly similar to those of PMEN1. The regions of the PMEN1 genome that differed from the ancestor contained genes associated with antibiotic resistance, transmission and virulence. We also revealed that PMEN1 was uniquely promiscuous with its DNA, donating penicillin-resistance genes and sometimes many other genes associated with antibiotic resistance, virulence and cell adherence to many genotypically diverse pneumococci. In particular, we describe two strains in which up to 10% of the PMEN1 genome was acquired in multiple fragments, some as long as 32 kb, distributed around the recipient genomes. This type of directional genetic promiscuity from a single clone to numerous unrelated clones has, to our knowledge, never before been described. Conclusions: These findings suggest that PMEN1 is a paradigm of genetic success both through its epidemiology and promiscuity. These findings also challenge the existing views about horizontal gene transfer among pneumococci

    Bridging the gap between modellers and model users, why does this gap exist and what can we do about it?

    Get PDF
    To access publisher´s full text version of this article. Please click on the hyperlink in Additional Links field.Streptococcus pneumoniae, also called the pneumococcus, is a major bacterial pathogen. Since its introduction in the 1940s, penicillin has been the primary treatment for pneumococcal diseases. Penicillin resistance rapidly increased among pneumococci over the past 30 years, and one particular multidrug-resistant clone, PMEN1, became highly prevalent globally. We studied a collection of 426 pneumococci isolated between 1937 and 2007 to better understand the evolution of penicillin resistance within this species. We discovered that one of the earliest known penicillin-nonsusceptible pneumococci, recovered in 1967 from Australia, was the likely ancestor of PMEN1, since approximately 95% of coding sequences identified within its genome were highly similar to those of PMEN1. The regions of the PMEN1 genome that differed from the ancestor contained genes associated with antibiotic resistance, transmission and virulence. We also revealed that PMEN1 was uniquely promiscuous with its DNA, donating penicillin-resistance genes and sometimes many other genes associated with antibiotic resistance, virulence and cell adherence to many genotypically diverse pneumococci. In particular, we describe two strains in which up to 10% of the PMEN1 genome was acquired in multiple fragments, some as long as 32 kb, distributed around the recipient genomes. This type of directional genetic promiscuity from a single clone to numerous unrelated clones has, to our knowledge, never before been described. These findings suggest that PMEN1 is a paradigm of genetic success both through its epidemiology and promiscuity. These findings also challenge the existing views about horizontal gene transfer among pneumococci

    Identification of novel virulence genes and metabolic pathways required for full fitness of Pseudomonas savastanoi pv. savastanoi in olive (Olea europaea) knots

    No full text
    Comparative genomics and functional analysis of Pseudomonas syringae and related pathogens have mainly focused on diseases of herbaceous plants; however, there is a general lack of knowledge about the virulence and pathogenicity determinants required for infection of woody plants. Here, we applied signature-tagged mutagenesis (STM) to Pseudomonas savastanoi pv. savastanoi during colonization of olive (Olea europaea) knots, with the goal of identifying the range of genes linked to growth and symptom production in its plant host. A total of 58 different genes were identified, and most mutations resulted in hypovirulence in woody olive plants. Sequence analysis of STM mutations allowed us to identify metabolic pathways required for full fitness of P. savastanoi in olive and revealed novel mechanisms involved in the virulence of this pathogen, some of which are essential for full colonization of olive knots by the pathogen and for the lysis of host cells. This first application of STM to a P. syringae-like pathogen provides confirmation of functional capabilities long believed to play a role in the survival and virulence of this group of pathogens but not adequately tested before, and unravels novel factors not correlated previously with the virulence of other plant or animal bacterial pathogens. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.This work was supported by the Spanish MINECO grants AGL08-05311 and AGL11-30343-C02-01, co-financed by FEDER. IMM was supported by the Ramón Areces Foundation (Spain). We thank D. Holden (Imperial College, London, UK) for kindly providing the collection of tagged miniTn5Km2 transposons. A. de Vicente and A.J. Jimenez are thanked for help with the analysis of virulence inolive plants and for the preparation and microscopic visualization of olive knot sections, respectively. C. Beuzon and J.Ruiz-Albertare thanked for valuable advice regarding STM screening. We thank M. Duarte for excellent technical assistance. We are grateful to A. Barcelo and I. Imbroda for the micropropagation of olive plants.Peer Reviewe

    Fate of a Pseudomonas savastanoi pv. savastanoi Type III Secretion System Mutant in Olive Plants (Olea europaea L.)▿†

    Get PDF
    Pseudomonas savastanoi pv. savastanoi strain NCPPB 3335 is a model bacterial pathogen for studying the molecular basis of disease production in woody hosts. We report the sequencing of the hrpS-to-hrpZ region of NCPPB 3335, which has allowed us to determine the phylogenetic position of this pathogen with respect to previously sequenced Pseudomonas syringae hrp clusters. In addition, we constructed a mutant of NCPPB 3335, termed T3, which carries a deletion from the 3′ end of the hrpS gene to the 5′ end of the hrpZ operon. Despite its inability to multiply in olive tissues and to induce tumor formation in woody olive plants, P. savastanoi pv. savastanoi T3 can induce knot formation on young micropropagated olive plants. However, the necrosis and formation of internal open cavities previously reported in knots induced by the wild-type strain were not observed in those induced by P. savastanoi pv. savastanoi T3. Tagging of P. savastanoi pv. savastanoi T3 with green fluorescent protein (GFP) allowed real-time monitoring of its behavior on olive plants. In olive plant tissues, the wild-type strain formed aggregates that colonized the intercellular spaces and internal cavities of the hypertrophic knots, while the mutant T3 strain showed a disorganized distribution within the parenchyma of the knot. Ultrastructural analysis of knot sections revealed the release of extensive outer membrane vesicles from the bacterial cell surface of the P. savastanoi pv. savastanoi T3 mutant, while the wild-type strain exhibited very few vesicles. This phenomenon has not been described before for any other bacterial phytopathogen during host infection
    corecore