191 research outputs found

    Experimental Assessment of Proximal Stent-graft (InterVascularTM) Fixation in Human Cadaveric Infrarenal Aortas

    Get PDF
    AbstractObjectivesthis paper investigates the radial deformation load of an aortic endoluminal prosthesis and determines the longitudinal load required to cause migration in a human cadaveric aorta of the endoprosthesis.Design and methodsthe endovascular prosthesis under investigation was a 24 mm diameter, nitinol, self-expanding aortoaortic device (InterVascular, Clearwater, Florida, U.S.A.). Initially, a motorised digital force gauge developed an incremental load which was applied to the ends of five stent-grafts, to a maximum of 10 mm (42%) compression. Secondly, using a simple bench model, each end of four stent-grafts were deployed into 10 cadaveric experimental aneurysm necks and a longitudinal load applied to effect distraction.Resultsincreasing load produced increasing percentage deformation of the stent-grafts. The mean longitudinal distraction load for an aneurysm neck of 20 mm was 409 g (200–480 g), for 15 mm was 277 g (130–410 g) and for 10 mm was 218 g (130–340 g). The aneurysm diameter and aortic calcification hadpvalues of 0.002 and 0.047, respectively, while thepvalue for aneurysm neck length was less than 0.00001.Conclusionsthese results suggest that there is a theoretical advantage of oversizing an aortic prosthesis and that sufficient anchorage is achieved in an aortic neck of 10 mm to prevent migration when fully deployed

    The conserved Fanconi anemia nuclease Fan1 and the SUMO E3 ligase Pli1 act in two novel Pso2-independent pathways of DNA interstrand crosslink repair in yeast

    Get PDF
    DNA interstrand cross-links (ICLs) represent a physical barrier to the progression of cellular machinery involved in DNA metabolism. Thus, this type of adduct represents a serious threat to genomic stability and as such, several DNA repair pathways have evolved in both higher and lower eukaryotes to identify this type of damage and restore the integrity of the genetic material. Human cells possess a specialized ICL-repair system, the Fanconi anemia (FA) pathway. Conversely yeasts rely on the concerted action of several DNA repair systems. Recent work in higher eukaryotes identified and characterized a novel conserved FA component, FAN1 (Fanconi anemia-associated nuclease 1, or FANCD2/FANCI-associated nuclease 1). In this study, we characterize Fan1 in the yeast Schizosaccharomyces pombe. Using standard genetics, we demonstrate that Fan1 is a key component of a previously unidentified ICL-resolution pathway. Using high-throughput synthetic genetic arrays, we also demonstrate the existence of a third pathway of ICL repair, dependent on the SUMO E3 ligase Pli1. Finally, using sequence-threaded homology models, we predict and validate key residues essential for Fan1 activity in ICL repair

    Stochastic Approximation to Understand Simple Simulation Models

    Get PDF
    This paper illustrates how a deterministic approximation of a stochastic process can be usefully applied to analyse the dynamics of many simple simulation models. To demonstrate the type of results that can be obtained using this approximation, we present two illustrative examples which are meant to serve as methodological references for researchers exploring this area. Finally, we prove some convergence results for simulations of a family of evolutionary games, namely, intra-population imitation models in n-player games with arbitrary payoffs.Ministerio de Educación (JC2009- 00263), Ministerio de Ciencia e Innovación (CONSOLIDER-INGENIO 2010: CSD2010-00034, DPI2010-16920

    Layer-by-layer technique to developing functional nanolaminate films with antifungal activity

    Get PDF
    The layer-by-layer (LbL) deposition method was used to build up alternating layers (five) of different polyelectrolyte solutions (alginate, zein-carvacrol nanocapsules, chitosan and chitosan-carvacrol emulsions) on an aminolysed/charged polyethylene terephthalate (A/C PET) film. These nanolaminated films were characterised by contact angle measurements and through the determination of water vapour (WVTR) and oxygen (O2TR) transmission rates. The effect of active nanolaminated films against the Alternaria sp. and Rhizopus stolonifer was also evaluated. This procedure allowed developing optically transparent nanolaminated films with tuneable water vapour and gas properties and antifungal activity. The water and oxygen transmission rate values for the multilayer films were lower than those previously reported for the neat alginate or chitosan films. The presence of carvacrol and zein nanocapsules significantly decreased the water transmission rate (up to 40 %) of the nanolaminated films. However, the O2TR behaved differently and was only improved (up to 45 %) when carvacrol was encapsulated, i.e. nanolaminated films prepared by alternating alginate with nanocapsules of zein-carvacrol layers showed better oxygen barrier properties than those prepared as an emulsion of chitosan and carvacrol. These films containing zein-carvacrol nanocapsules also showed the highest antifungal activity (30 %), which did not significantly differ from those obtained with the highest amount of carvacrol, probably due to the controlled release of the active agent (carvacrol) from the zein-carvacrol nanocapsules. Thus, this work shows that nanolaminated films prepared with alternating layers of alginate and zein-carvacrol nanocapsules can be considered to improve the shelf-life of foodstuffs.The authors acknowledge financial support from FP7 IP project BECOBIOCAP^. M. J. Fabra is recipients of a Juan de la Cierva contract from the Spanish Ministry of Economy and Competitivity. Maria L. Flores-López thanks Mexican Science and Technology Council (CONACyT, Mexico) for PhD fellowship support (CONACyT Grant Number 215499/310847). The author Miguel A. Cerqueira is a recipient of a fellowship (SFRH/BPD/72753/2010) supported by Fundação para a Ciência e Tecnologia, POPH-QREN and FSE (FCT, Portugal). The authors also thank the FCT Strategic Project of UID/ BIO/04469/2013 unit, the project RECI/BBB-EBI/0179/2012 (FCOMP- 01-0124-FEDER-027462) and the project BBioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes,^ REF. NORTE-07-0124-FEDER-000028 Co-funded by the Programa Operacional Regional do Norte (ON.2–O Novo Norte), QREN, FEDER. The support of EU Cost Action FA0904 is gratefully acknowledged

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Highly-parallelized simulation of a pixelated LArTPC on a GPU

    Get PDF
    The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype

    Search for the Zγ decay mode of new high-mass resonances in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This letter presents a search for narrow, high-mass resonances in the Zγ final state with the Z boson decaying into a pair of electrons or muons. The √s = 13 TeV pp collision data were recorded by the ATLAS detector at the CERN Large Hadron Collider and have an integrated luminosity of 140 fb−1. The data are found to be in agreement with the Standard Model background expectation. Upper limits are set on the resonance production cross section times the decay branching ratio into Zγ. For spin-0 resonances produced via gluon–gluon fusion, the observed limits at 95% confidence level vary between 65.5 fb and 0.6 fb, while for spin-2 resonances produced via gluon–gluon fusion (or quark–antiquark initial states) limits vary between 77.4 (76.1) fb and 0.6 (0.5) fb, for the mass range from 220 GeV to 3400 GeV
    corecore