75 research outputs found

    A new strategy for enhancing imputation quality of rare variants from next-generation sequencing data via combining SNP and exome chip data

    Get PDF
    Background: Rare variants have gathered increasing attention as a possible alternative source of missing heritability. Since next generation sequencing technology is not yet cost-effective for large-scale genomic studies, a widely used alternative approach is imputation. However, the imputation approach may be limited by the low accuracy of the imputed rare variants. To improve imputation accuracy of rare variants, various approaches have been suggested, including increasing the sample size of the reference panel, using sequencing data from study-specific samples (i.e., specific populations), and using local reference panels by genotyping or sequencing a subset of study samples. While these approaches mainly utilize reference panels, imputation accuracy of rare variants can also be increased by using exome chips containing rare variants. The exome chip contains 250 K rare variants selected from the discovered variants of about 12,000 sequenced samples. If exome chip data are available for previously genotyped samples, the combined approach using a genotype panel of merged data, including exome chips and SNP chips, should increase the imputation accuracy of rare variants. Results: In this study, we describe a combined imputation which uses both exome chip and SNP chip data simultaneously as a genotype panel. The effectiveness and performance of the combined approach was demonstrated using a reference panel of 848 samples constructed using exome sequencing data from the T2D-GENES consortium and 5,349 sample genotype panels consisting of an exome chip and SNP chip. As a result, the combined approach increased imputation quality up to 11 %, and genomic coverage for rare variants up to 117.7 % (MAF < 1 %), compared to imputation using the SNP chip alone. Also, we investigated the systematic effect of reference panels on imputation quality using five reference panels and three genotype panels. The best performing approach was the combination of the study specific reference panel and the genotype panel of combined data. Conclusions: Our study demonstrates that combined datasets, including SNP chips and exome chips, enhances both the imputation quality and genomic coverage of rare variants

    Large-scale discovery of novel genetic causes of developmental disorders

    Get PDF
    Despite three decades of successful, predominantly phenotype-driven discovery of the genetic causes of monogenic disorders1, up to half of children with severe developmental disorders of probable genetic origin remain without a genetic diagnosis. Particularly challenging are those disorders rare enough to have eluded recognition as a discrete clinical entity, those with highly variable clinical manifestations, and those that are difficult to distinguish from other, very similar, disorders. Here we demonstrate the power of using an unbiased genotype-driven approach2 to identify subsets of patients with similar disorders. By studying 1,133 children with severe, undiagnosed developmental disorders, and their parents, using a combination of exome sequencing3,4,5,6,7,8,9,10,11 and array-based detection of chromosomal rearrangements, we discovered 12 novel genes associated with developmental disorders. These newly implicated genes increase by 10% (from 28% to 31%) the proportion of children that could be diagnosed. Clustering of missense mutations in six of these newly implicated genes suggests that normal development is being perturbed by an activating or dominant-negative mechanism. Our findings demonstrate the value of adopting a comprehensive strategy, both genome-wide and nationwide, to elucidate the underlying causes of rare genetic disorders

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution.A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Diabetes mellitus: pathophysiological changes and therap

    Modeling the effects of radial diffusion and plasmaspheric hiss on outer radiation belt electrons

    Get PDF
    We simulate the behaviour of relativistic (976 keV) electrons in the outer radiation belt (3 ≤ L ≤ 7) during the first half of the CRRES mission. We use a 1d radial diffusion model with losses due to pitch-angle scattering by plasmaspheric hiss expressed through the electron lifetime calculated using the PADIE code driven by a global K p -dependent model of plasmaspheric hiss intensity and f pe /f ce . We use a time and energy-dependent outer boundary derived from observations. The model reproduces flux variations to within an order of magnitude for L ≤ 4 suggesting hiss is the dominant cause of electron losses in the plasmasphere near the equator. At L = 5 the model reproduces significant variations but underestimates the size of the variability. We find that during magnetic storms hiss can cause significant losses for L ≤ 6 due to its presence in plumes. Wave acceleration is partially represented by the boundary conditions

    Outcomes of ureteroscopy for stone disease in pregnancy: results from a systematic review of the literature

    No full text
    Introduction: our aim was to evaluate the clinical efficacy and safety of ureteroscopy as a primary treatment for pregnant women with symptomatic ureteric stones who have failed conservative management.Materials and methods: a systematic review of the literature from January 1990 to June 2011 was performed, including all English language articles. Outcome measures were clinical efficacy, in terms of stone clearance and need for additional procedures, and safety in terms of complications.Results: a total of 239 abstracts were screened and 15 studies were identified reporting on 116 procedures. The surgical methods of stone management employed were stone extraction with basket only (n = 55, 47%), laser fragmentation (n = 27, 23%; holmium, n = 20, pulse dye, n = 7), impact lithotripsy (n = 21, 18%), ureteroscopic lithotripsy (n = 6, 5%) and a combination of methods (n = 6, 5%). A post-operative stent was inserted in 64 of 116 procedures (55%). Complete stone clearance was seen in 100 of the 116 procedures (86%). There were 2 major complications (1 ureteral perforation and 1 case of premature uterine contraction) and 7 minor complications (5 urinary tract infections and 2 cases of post-operative pain).Conclusions: this review suggests that stone clearance using ureteroscopy is a relatively safe option in pregnancy with a high success rate.</p

    Knowledge and concerns of newly diagnosed NIDDM patients in Singapore

    No full text
    10.1016/0168-8227(91)90125-WDiabetes Research and Clinical Practice12111-18DRCP

    Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences.

    No full text
    Twenty-one genes encoding surface proteins belonging to the LPXTG family have been identified by in silico analysis of six Staphylococcus aureus genome sequences. Eleven genes encode previously described proteins, while 10 have not yet been characterized. Of these, eight contain the cell-wall sorting signal LPXTG responsible for covalently anchoring proteins to the cell-wall peptidoglycan. The remaining two, SasF and SasD, harbour a single residue variation in the fourth position of the LPXTG motif (LPXAG). Western blotting of lysostaphin-solubilized S. aureus cell-wall proteins demonstrated the release of SasF in the cell-wall fraction, indicating that proteins carrying LPXAG are sorted normally. Analysis of primary sequences of the Staphylococcus aureus surface (Sas) proteins indicated that several share a similar structural organization and a common signal sequence with previously characterized LPXTG proteins of S. aureus and other Gram-positive cocci. Protein SasG has 128 residue B repeats that are almost identical at the DNA level. PCR analysis indicated that recombinants with repeat length variations are present in the bacterial population whereas they are not detectable in the B-repeat-encoding region of sdrD. The sasG and sasH genes are significantly associated with invasive disease isolates compared to nasal carriage isolates. Several IgG samples purified from patients recovering from S. aureus infections had higher titres against Sas proteins than control IgG, suggesting that expression occurred during infection in some patients
    corecore