7 research outputs found

    Subdividing Y-chromosome haplogroup R1a1 reveals Norse Viking dispersal lineages in Britain

    Get PDF
    The influence of Viking-Age migrants to the British Isles is obvious in archaeological and place-names evidence, but their demographic impact has been unclear. Autosomal genetic analyses support Norse Viking contributions to parts of Britain, but show no signal corresponding to the Danelaw, the region under Scandinavian administrative control from the ninth to eleventh centuries. Y-chromosome haplogroup R1a1 has been considered as a possible marker for Viking migrations because of its high frequency in peninsular Scandinavia (Norway and Sweden). Here we select ten Y-SNPs to discriminate informatively among hg R1a1 sub-haplogroups in Europe, analyse these in 619 hg R1a1 Y chromosomes including 163 from the British Isles, and also type 23 short-tandem repeats (Y-STRs) to assess internal diversity. We find three specifically Western-European sub-haplogroups, two of which predominate in Norway and Sweden, and are also found in Britain; starlike features in the STR networks of these lineages indicate histories of expansion. We ask whether geographical distributions of hg R1a1 overall, and of the two sub-lineages in particular, correlate with regions of Scandinavian influence within Britain. Neither shows any frequency difference between regions that have higher (≥10%) or lower autosomal contributions from Norway and Sweden, but both are significantly overrepresented in the region corresponding to the Danelaw. These differences between autosomal and Y-chromosomal histories suggest either male-specific contribution, or the influence of patrilocality. Comparison of modern DNA with recently available ancient DNA data supports the interpretation that two sub-lineages of hg R1a1 spread with the Vikings from peninsular Scandinavia

    Application of a mitochondrial DNA control region frequency database for UK domestic cats

    No full text
    DNA variation in 402 bp of the mitochondrial control region flanked by repeat sequences RS2 and RS3 was evaluated by Sanger sequencing in 152 English domestic cats, in order to determine the significance of matching DNA sequences between hairs found with a victim’s body and the suspect’s pet cat. Whilst 95% of English cats possessed one of the twelve globally widespread mitotypes, four new variants were observed, the most common of which (2% frequency) was shared with the evidential samples. No significant difference in mitotype frequency was seen between 32 individuals from the locality of the crime and 120 additional cats from the rest of England, suggesting a lack of local population structure. However, significant differences were observed in comparison with frequencies in other countries, including the closely neighbouring Netherlands, highlighting the importance of appropriate genetic databases when determining the evidential significance of mitochondrial DNA evidence

    Mitogenome sequences of domestic cats demonstrate lineage expansions and dynamic mutation processes in a mitochondrial minisatellite.

    No full text
    BACKGROUND: As a population genetic tool, mitochondrial DNA is commonly divided into the ~ 1-kb control region (CR), in which single nucleotide variant (SNV) diversity is relatively high, and the coding region, in which selective constraint is greater and diversity lower, but which provides an informative phylogeny. In some species, the CR contains variable tandemly repeated sequences that are understudied due to heteroplasmy. Domestic cats (Felis catus) have a recent origin and therefore traditional CR-based analysis of populations yields only a small number of haplotypes. RESULTS: To increase resolution we used Nanopore sequencing to analyse 119 cat mitogenomes via a long-amplicon approach. This greatly improves discrimination (from 15 to 87 distinct haplotypes in our dataset) and defines a phylogeny showing similar starlike topologies within all major clades (haplogroups), likely reflecting post-domestication expansion. We sequenced RS2, a CR tandem array of 80-bp repeat units, placing RS2 array structures within the phylogeny and increasing overall haplotype diversity. Repeat number varies between 3 and 12 (median: 4) with over 30 different repeat unit types differing largely by SNVs. Five SNVs show evidence of independent recurrence within the phylogeny, and seven are involved in at least 11 instances of rapid spread along repeat arrays within haplogroups. CONCLUSIONS: In defining mitogenome variation our study provides key information for the forensic genetic analysis of cat hair evidence, and for the first time a phylogenetically informed picture of tandem repeat variation that reveals remarkably dynamic mutation processes at work in the mitochondrion

    A Rapid, Shallow Whole Genome Sequencing Workflow Applicable to Limiting Amounts of Cell-Free DNA.

    No full text
    BackgroundSomatic copy number alterations (sCNAs) acquired during the evolution of breast cancer provide valuable prognostic and therapeutic information. Here we present a workflow for screening sCNAs using picogram amounts of cell-free DNA (cfDNA) and single circulating tumor cells (CTCs).MethodsWe repurposed the Ion ReproSeq PGS™ preimplantation genetic testing kit to perform shallow whole genome sequencing on 178 cfDNA samples (300 pg) and individual CTCs from 10 MBC patients with metastatic breast cancer (MBC) recovered by CellSearch®/DEPArray™. Results were analyzed using a tailored ichorCNA workflow.ResultssCNAs were detected in cfDNA of 41/105 (39%) patients with MBC and 3/23 (13%) primary breast cancers on follow-up (PBC FU), all of whom subsequently relapsed. In 8 of 10 MBCs, individual CTCs had a higher copy number count than matched cfDNA. The median tumor fraction detected by ichorCNA was 0.34 (range 0.17-0.58) for MBC and 0.36 (range 0.31-0.37) for PBC FU. Patients with detectable tumor fraction (≥ 0.1) and TFx and OncomineTM variants had significantly lower overall survival rates (P values P = 0.002 and P ConclusionsThe ReproSeq PGS assay is rapid, at approximately $120 per sample, providing both a sCNA profile and estimation of the tumor DNA fraction from limiting cfDNA template (300pg) and individual CTCs. The approach could be used to examine the copy number landscape over time to guide treatment decisions, support future trial designs, and be applied to low volume blood spot samples enabling remote monitoring
    corecore