182 research outputs found

    Behaviorally spontaneous confabulation in limbic encephalitis: The roles of reality filtering and strategic monitoring

    Get PDF
    Behaviorally spontaneous confabulation is characterized by a confusion of reality evident in currently inappropriate acts that patients justify with confabulations and in disorientation. Here, we describe a 38-year-old woman lawyer hospitalized because of non-herpetic, presumably autoimmune, limbic encephalitis. For months, she considered herself at work and desperately tried to respect her falsely believed professional obligations. In contrast to a completely erroneous concept of reality, she did not confabulate about her remote personal past. In tasks proposed to test strategic retrieval monitoring, she produced no confabulations. As expected, she failed in tasks of reality filtering, previously shown to have high sensitivity and specificity for behaviorally spontaneous confabulation and disorientation: she failed to suppress the interference of currently irrelevant memories and she had deficient extinction capacity. The observation underscores the special status of behaviorally spontaneous confabulation among confabulatory phenomena and of reality filtering as a thought control mechanism. We suggest that different processes may underlie the generation of false memories and their verbal expression. We also emphasize the need to present theories of confabulation together with experimental tasks that allow one to empirically verify the theories and to explore underlying physiological mechanisms. (JINS, 2010, 16, 995-1005.

    Conformational epitopes of myelin oligodendrocyte glycoprotein are targets of potentially pathogenic antibody responses in multiple sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Myelin/oligodendrocyte glycoprotein (MOG) is a putative autoantigen in multiple sclerosis (MS). Establishing the pathological relevance and validity of anti-MOG antibodies as biomarkers has yielded conflicting reports mainly due to different MOG isoforms used in different studies. Because epitope specificity may be a key factor determining anti-MOG reactivity we aimed at identifying <it>a priori </it>immunodominant MOG epitopes by monoclonal antibodies (mAbs) and at assessing clinical relevance of these epitopes in MS.</p> <p>Methods</p> <p>Sera of 325 MS patients, 69 patients with clinically isolated syndrome and 164 healthy controls were assayed by quantitative, high-throughput ELISA for reactivity to 3 different MOG isoforms, and quantitative titers correlated with clinical characteristics. mAbs defined unique immunodominant epitopes distinct to each of the isoforms.</p> <p>Results</p> <p>In the majority of human samples anti-MOG levels were skewed towards low titers. However, in 8.2% of samples high-titer anti-MOG antibodies were identified. In contrast to anti-MOG reactivity observed in a mouse model of MS, in patients with MS these never reacted with ubiquitously exposed epitopes. Moreover, in patients with relapsing-remitting MS high-titer anti-MOG IgG correlated with disability (EDSS; Spearman r = 0.574; p = 0.025).</p> <p>Conclusions</p> <p>Thus high-titer reactivity likely represents high-affinity antibodies against pathologically relevant MOG epitopes, that are only present in a small proportion of patients with MS. Our study provides valuable information about requirements of anti-MOG reactivity for being regarded as a prognostic biomarker in a subtype of MS.</p

    Glatiramer acetate treatment does not modify the clinical course of (NZB × BXSB)F1 lupus murine model

    Get PDF
    Glatiramer acetate (GA, copolymer-1, Copaxone®), a therapy approved for treatment of multiple sclerosis (MS), prevents and reverses experimental autoimmune encephalomyelitis, the animal model of MS. In central nervous system autoimmune disease, GA is thought to act through modulation of antigen-presenting cells, such as monocytes, mediating an antigen-independent Th2 shift and development of FoxP3+ regulatory T cells. Recent reports indicate that GA may also be effective in models of other autoimmune diseases such as uveoretinitis, inflammatory bowel disease and graft rejection. To date, the potential effect of GA in lupus animal models has not been described. (NZB × BXSB)F1, male mice bearing Y-linked autoimmune acceleration , is a lupus-prone mouse model which is associated with a monocytosis accelerating disease progression. These mice were treated with GA before disease onset until death and both mortality rate and biological parameters were assessed to investigate whether GA may be beneficial in this spontaneous model of systemic lupus erythematosus. GA exerted no beneficial effect on the median survival after up to 7 months of treatment. Humoral and cellular parameters used as markers for lupus progression, such as anti-chromatin, anti-double-stranded DNA and anti-erythrocytes antibodies, hematocrit and monocytosis, were similarly unchanged. Our study demonstrates that GA has no significant effect on the progression of the (NZB × BXSB)F1 lupus-prone animal model. These results reinforce the hypothesis that GA may exert its beneficial effect in some specific autoimmune diseases onl

    CD4+c-Met+Itgα4+ T cell subset promotes murine neuroinflammation

    Get PDF
    Objective c-Met, a tyrosine kinase receptor, is the unique receptor for hepatocyte growth factor (HGF). The HGF/c-Met axis is reported to modulate cell migration, maturation, cytokine production, and antigen presentation. Here, we report that CD4(+)c-Met(+) T cells are detected at increased levels in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS). Methods c-Met expression by CD4(+) T cells was analyzed mostly by flow cytometry and by immunohistochemistry from mice and human PBMCs. The in vivo role of CD4(+)c-Met(+) T cells was assessed in EAE. Results CD4(+)c-Met(+) T cells found in the CNS during EAE peak disease are characterized by a pro-inflammatory phenotype skewed towards a Th1 and Th17 polarization, with enhanced adhesion and transmigration capacities correlating with increased expression of integrin alpha 4 (Itg alpha 4). The adoptive transfer of Itg alpha 4-expressing CD4(+)V alpha 3.2(+)c-Met(+) T cells induces increased disease severity compared to CD4(+)V alpha 3.2(+)c-Met(-) T cells. Finally, CD4(+)c-Met(+) T cells are detected in the brain of MS patients, as well as in the blood with a higher level of Itg alpha 4. These results highlight c-Met as an immune marker of highly pathogenic pro-inflammatory and pro-migratory CD4(+) T lymphocytes associated with neuroinflammation

    Complement Activation Is Associated With Disease Severity in Multiple Sclerosis.

    Get PDF
    BACKGROUND AND OBJECTIVES Histopathologic studies have identified immunoglobulin (Ig) deposition and complement activation as contributors of CNS tissue damage in multiple sclerosis (MS). Intrathecal IgM synthesis is associated with higher MS disease activity and severity, and IgM is the strongest complement-activating immunoglobulin. In this study, we investigated whether complement components (CCs) and complement activation products (CAPs) are increased in persons with MS, especially in those with an intrathecal IgM synthesis, and whether they are associated with disease severity and progression. METHODS CC and CAP levels were quantified in plasma and CSF of 112 patients with clinically isolated syndrome (CIS), 127 patients with MS (90 relapsing-remitting, 14 primary progressive, and 23 secondary progressive), 31 inflammatory neurologic disease, and 44 symptomatic controls from the Basel CSF databank study. Patients with CIS/MS were followed in the Swiss MS cohort study (median 6.3 years). Levels of CC/CAP between diagnosis groups were compared; in CIS/MS, associations of CC/CAP levels with intrathecal Ig synthesis, baseline Expanded Disability Status Scale (EDSS) scores, MS Severity Score (MSSS), and neurofilament light chain (NfL) levels were investigated by linear regression, adjusted for age, sex, and albumin quotient. RESULTS CSF (but not plasma) levels of C3a, C4a, Ba, and Bb were increased in patients with CIS/MS, being most pronounced in those with an additional intrathecal IgM production. In CIS, doubling of C3a and C4a in CSF was associated with 0.31 (CI 0.06-0.56; p = 0.016) and 0.32 (0.02-0.62; p = 0.041) increased EDSS scores at lumbar puncture. Similarly, doubling of C3a and Ba in CIS/MS was associated with 0.61 (0.19-1.03; p < 0.01) and 0.74 (0.18-1.31; p = 0.016) increased future MSSS. In CIS/MS, CSF levels of C3a, C4a, Ba, and Bb were associated with increased CSF NfL levels, e.g., doubling of C3a was associated with an increase of 58% (Est. 1.58; CI 1.37-1.81; p < 0.0001). DISCUSSION CNS-compartmentalized activation of the classical and alternative pathways of complement is increased in CIS/MS and associated with the presence of an intrathecal IgM production. Increased complement activation within the CSF correlates with EDSS, future MSSS, and NfL levels, supporting the concept that complement activation contributes to MS pathology and disease progression. Complement inhibition should be explored as therapeutic target to attenuate disease severity and progression in MS

    MHC class II–restricted antigen presentation by plasmacytoid dendritic cells inhibits T cell–mediated autoimmunity

    Get PDF
    Although plasmacytoid dendritic cells (pDCs) express major histocompatibility complex class II (MHCII) molecules, and can capture, process, and present antigens (Ags), direct demonstrations that they function as professional Ag-presenting cells (APCs) in vivo during ongoing immune responses remain lacking. We demonstrate that mice exhibiting a selective abrogation of MHCII expression by pDCs develop exacerbated experimental autoimmune encephalomyelitis (EAE) as a consequence of enhanced priming of encephalitogenic CD4+ T cell responses in secondary lymphoid tissues. After EAE induction, pDCs are recruited to lymph nodes and establish MHCII-dependent myelin-Ag–specific contacts with CD4+ T cells. These interactions promote the selective expansion of myelin-Ag–specific natural regulatory T cells that dampen the autoimmune T cell response. pDCs thus function as APCs during the course of EAE and confer a natural protection against autoimmune disease development that is mediated directly by their ability to present of Ags to CD4+ T cells in vivo

    A Multicenter Longitudinal MRI Study Assessing LeMan-PV Software Accuracy in the Detection of White Matter Lesions in Multiple Sclerosis Patients.

    Get PDF
    BACKGROUND Detecting new and enlarged lesions in multiple sclerosis (MS) patients is needed to determine their disease activity. LeMan-PV is a software embedded in the scanner reconstruction system of one vendor, which automatically assesses new and enlarged white matter lesions (NELs) in the follow-up of MS patients; however, multicenter validation studies are lacking. PURPOSE To assess the accuracy of LeMan-PV for the longitudinal detection NEL white-matter MS lesions in a multicenter clinical setting. STUDY TYPE Retrospective, longitudinal. SUBJECTS A total of 206 patients with a definitive MS diagnosis and at least two follow-up MRI studies from five centers participating in the Swiss Multiple Sclerosis Cohort study. Mean age at first follow-up = 45.2 years (range: 36.9-52.8 years); 70 males. FIELD STRENGTH/SEQUENCE Fluid attenuated inversion recovery (FLAIR) and T1-weighted magnetization prepared rapid gradient echo (T1-MPRAGE) sequences at 1.5 T and 3 T. ASSESSMENT The study included 313 MRI pairs of datasets. Data were analyzed with LeMan-PV and compared with a manual "reference standard" provided by a neuroradiologist. A second rater (neurologist) performed the same analysis in a subset of MRI pairs to evaluate the rating-accuracy. The Sensitivity (Se), Specificity (Sp), Accuracy (Acc), F1-score, lesion-wise False-Positive-Rate (aFPR), and other measures were used to assess LeMan-PV performance for the detection of NEL at 1.5 T and 3 T. The performance was also evaluated in the subgroup of 123 MRI pairs at 3 T. STATISTICAL TESTS Intraclass correlation coefficient (ICC) and Cohen's kappa (CK) were used to evaluate the agreement between readers. RESULTS The interreader agreement was high for detecting new lesions (ICC = 0.97, Pvalue < 10-20 , CK = 0.82, P value = 0) and good (ICC = 0.75, P value < 10-12 , CK = 0.68, P value = 0) for detecting enlarged lesions. Across all centers, scanner field strengths (1.5 T, 3 T), and for NEL, LeMan-PV achieved: Acc = 61%, Se = 65%, Sp = 60%, F1-score = 0.44, aFPR = 1.31. When both follow-ups were acquired at 3 T, LeMan-PV accuracy was higher (Acc = 66%, Se = 66%, Sp = 66%, F1-score = 0.28, aFPR = 3.03). DATA CONCLUSION In this multicenter study using clinical data settings acquired at 1.5 T and 3 T, and variations in MRI protocols, LeMan-PV showed similar sensitivity in detecting NEL with respect to other recent 3 T multicentric studies based on neural networks. While LeMan-PV performance is not optimal, its main advantage is that it provides automated clinical decision support integrated into the radiological-routine flow. EVIDENCE LEVEL 4 TECHNICAL EFFICACY: Stage 2
    corecore