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Abstract

Glatiramer acetate (GA, copolymer-1, Copaxone®), a therapy approved for treatment of multiple
sclerosis (MS), prevents and reverses experimental autoimmune encephalomyelitis, the animal model
of MS. In central nervous system autoimmune disease, GA is thought to act through modulation of
antigen-presenting cells, such as monocytes, mediating an antigen-independent T,2 shift and
development of FoxP3+ regulatory T cells. Recent reports indicate that GA may also be effective in
models of other autoimmune diseases such as uveoretinitis, inflammatory bowel disease and graft
rejection. To date, the potential effect of GA in lupus animal models has not been described. (NZB x
BXSB)F1, male mice bearing Y-linked autoimmune acceleration , is a lupus-prone mouse model which
is associated with a monocytosis accelerating disease progression. These mice were treated with GA
before disease onset until death and both mortality rate and biological parameters were assessed to
investigate whether GA may be beneficial in this spontaneous model of systemic lupus
erythematosus. GA exerted no beneficial effect on the median survival after up to 7 months of
treatment. Humoral and cellular parameters used as markers for lupus progression, such as anti-
chromatin, anti-double-stranded DNA and anti-erythrocytes antibodies, hematocrit and monocytosis,
were similarly unchanged. Our study demonstrates that GA has no significant effect on the
progression of the (NZB x BXSB)F1 lupus-prone animal model. These results reinforce the
hypothesis that GA may exert its beneficial effect in some specific autoimmune diseases only.

Introduction

Glatiramer acetate (GA) (Copaxone®) is a copolymer of
40-100 residues which is randomly composed of the four
amino acids glutamate, lysine, alanine and tyrosine in a de-
fined molar ratio (1). Initially developed to mimic a major
component of the myelin sheath, MBP, and induce experi-
mental autoimmune encephalomyelitis (EAE), GA unexpect-
edly inhibited EAE in both rodents and monkeys (2-5). In
subsequent clinical trials, GA reduced relapse rate and pro-
gression of disability in patients with relapsing—remitting mul-
tiple sclerosis (MS) leading to its approval in 1995.

The mechanism by which GA is beneficial in central ner-
vous system (CNS) autoimmune disease (reviewed in refs 6, 7)
is thought to be mediated through a preferential T,,2 devi-

ation of myelin-specific T cells (8-10). Other effect of GA
involves modulation of CD8+ T cells (11) and antigen-
presenting cells (APC) (12). Recently, GA has been shown
to induce monocytes to direct differentiation of regulatory T cells
(Treg) in an antigen-independent manner (13). This obser-
vation favors the hypothesis that this drug may be effective
in autoimmune diseases other than MS.

Systemic lupus erythematosus (SLE) is an autoimmune
disorder characterized by the involvement of multiple organ
systems with alternating clinical exacerbations and remissions.
Circulating immune complexes and auto-antibodies cause
tissue damage and organ dysfunction with manifestations
involving the skin, serosal surfaces, CNS and kidneys (14).
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These manifestations are believed to be the result of interac-
tions between autoreactive lymphocytes that arise from both
hereditary immunoregulatory defects and environmental fac-
tors, including chemicals and UV radiation. Autoreactive
T and B cells drive the production of auto-antibodies and
the formation of immune complexes, which ultimately lead to
tissue damage and organ failure in SLE (15). It is well estab-
lished that in SLE, several genetic factors independently
contribute to the overall susceptibility and progression of
the disease (16-18).

Despite many common characteristics, the mouse models
of lupus exhibit unique histological and serological manifes-
tations as well as unique disease accelerators. Male BXSB
mice carry the Y-chromosome-associated accelerator of au-
toimmunity termed Y-linked autoimmune acceleration (Yaa).
The Yaa mutation has been shown to be responsible for the
acceleration of the lupus-like autoimmune syndrome in BXSB
mice and in their F41 hybrids with NZB or NZW mice (19, 20).
More recently, the Yaa mutation was shown to be a conse-
quence of a translocation from the telomeric end of the
X chromosome onto the Y chromosome (21, 22). Hybrid
(NZB X NZW) F1 Yaa-bearing mice spontaneously develop
a generalized autoimmune disorder resembling human SLE
(23). Monocytosis is a unique cellular abnormality associ-
ated with the Yaa mutation (24). In PBMCs from an 8-month-
old male BXSB mouse, monocytes reach >50% of leuco-
cytes and is thought to be a major trigger of the accelerated
development of lupus disease in this animal model (25, 26).
Thus, in this project, the lupus (NZB X BXSB)F1 model was
chosen for its accelerated disease associated with specific
monocytosis, in regard of the recent demonstration of the
potential antigen-independent effect of GA on monocytes
and T cell function (13).

Methods

Mice

Female NZB and male BXSB mice bearing the Yaa mutation
were obtained from local colonies and the hybrids (NZB X
BXSB)F1 male used in this study were obtained by local
breeding. Mice were bled (from retro-orbital sinus puncture)
at 1 and 2 months post-initiation of GA injection. C57BL/6 mice
were used as negative controls for monocytosis assessment.
The blood was allowed to clot at room temperature, and the
serum was stored at —20°C until use.

GA treatment

GA was injected daily subcutaneous (s.c.) (150 pg in 100 pl
PBS-mannitol) as previously described (13). Randomized
control littermates were injected with vehicle treatment con-
sisting of PBS and mannitol at equal concentration contained
in the GA preparation. GA and vehicle treatment were in-
jected from the age of 3 months until death. At 10 months of
age, mice still alive were sacrificed and kidney histology
was performed.

Serological assays

Serum levels of IgG auto-antibodies against chromatin and
double-stranded DNA (dsDNA) were determined by ELISA
(27, 28). Chromatin prepared from chick erythrocytes was

directly coated to ELISA plates, while dsDNA was coated to
ELISA plates precoated with poly-L-lysine (Sigma-Aldrich,
St Louis, MO, USA). Then, the plates were incubated with
1:100 diluted serum samples, and the assay was developed
with alkaline phosphatase-labeled goat anti-mouse I1gG, 1gG1
and IgG2a. Results are expressed in U mlI~" in reference to
a standard curve derived from a serum pool of MRL-Fas®"
mice.

Flow cytometric analysis of monocytosis

Flow cytometry was performed using two-color staining of
PBMC and analyzed with a FACSCalibur (Becton Dickinson,
Mountain View, CA, USA). The following mAbs were used:
anti-CD11b (M1/70) and anti-F4/80. Mice displaying percen-
tages of monocyte levels above the mean + 3 SD of controls
(C57BL/6) were considered as positive for monocytosis (25).

Determination of hematocrit

Blood samples were collected into heparinized microhema-
tocrit tubes and centrifuged at 12 000 r.p.m. for 5 min in a
microfuge (Sigma-201 M, Auer Bittmann Soulie AG, Geneva,
Switzerland). Percentage of packed RBC volume was di-
rectly measured after centrifugation.

Detection of Coombs antibodies

A flow cytometric assay was used to detect anti-erythrocyte
antibodies. After washing three times with 1% BSA-PBS, a
similar number of RBC [according to their hematocrit (Hct)]
was incubated with biotinylated rat anti-mouse kappa-chain
mAb (H139.52.1.5), followed by PE-conjugated streptavidin
(eBioscience, San Diego, CA, USA), and analyzed by FACS.
The results are expressed in ng ml~" in reference to a stan-
dard curve obtained with known concentration of 34.3C
IgG2a anti-RBC.

Histopathology

Kidney samples were collected when mice were moribund
or at the end of the experiment (10 months of age). Histolog-
ical sections were stained with periodic acid-Schiff reagent.
The extent of glomerulonephritis (GN) was graded on a 0-4
scale based on the intensity and extent of histopathological
changes as described previously (29). Histopathology was
performed in a blinded way by expert mice lupus patholo-
gist. GN with grade 3 or 4 was considered a significant con-
tributor to clinical disease and/or death.

Statistical analyses

Statistical analyses were performed using PRISM software
(GraphPad, San Diego, CA, USA). The statistical significance
(P < 0.05) was determined by the non-parametric Mann—
Whitney test.

Results

GA treatment does not modify mortality of (NZB X BXSB)F1
lupus mice

Mice received daily s.c. injection of GA or vehicle treatment
from the age of 3 months until death. GN is a pathological



hallmark feature of murine SLE. To examine the effect of GA
treatment on lupus nephritis and pathology, histological ex-
amination of the kidney was performed. Disease development
started in both groups within the first month of injection.
Classical progression of SLE as well as mortality was pres-
ent in both GA- and vehicle-treated groups with no differ-
ence. In the GA group, median time to death was 6.0 + 2.4
months, while in the placebo group it was 7.0 = 2.6 months
(P=ns). The Fig. 1(A) details the mortality rate of the
GA- (n= 15) and the vehicle-treated (n = 17) groups. To
avoid possible bias like death of mice of other cause than
GN, the mortality curve includes only mice that developed
typical GN with a score of 3+ or more (Fig. 1B).

GA treatment does not influence anti-erythrocytes antibody
production and Hct

Auto-antibodies are essential factors for several clinical man-
ifestations associated with SLE (14). The hybrid mice used in
this study develop auto-antibodies directed against erythro-
cyte (RBC) which induce anemia that can be detected during
the three to four first months of life. The production of
Coombs antibodies was assessed in (NZB X BXSB)F1 male
mice. No significant difference of anti-RBC antibodies was
found at the age of 4 months (i.e. 1 month post-treatment in-
jection) between GA- (n = 18) and vehicle-treated (n = 19)
mice (anti-RBC ng mi~! + SEM; 0.3 + 0.04 versus 0.45 *
0.06; P =ns) (Fig. 2A). The anti-RBC antibodies were in-
creased in the GA- and vehicle-treated groups when com-
pared with 2-month-old (NZB X BXSB)F1 mice (anti-RBC ng
mi~" = SEM; 0.15 + 0.02; P < 0.05). Hct was measured in
parallel to Coombs test. Hct values tested at the age of
4 months (i.e. 1 month post-treatment injection) were not differ-
ent between GA- (n = 18) and vehicle-treated (n = 19) mice
(Het% = SEM; 41.9 = 1.2 versus 39.7 * 1.1) but were sig-
nificantly decreased as compared with those of 2-month-old
mice (P < 0.05) (Fig. 2B). Anti-RBC antibodies and Hct were
also measured at the age of 5 months (i.e. 2 months post-
treatment injection) with no significant differences between
GA- and vehicle-treated groups (data not shown).
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Total IgG and subclasses IgG1 and IgG2a anti-chromatin and
anti-dsDNA production are not altered by GA treatment

NZB mice are genetically predisposed to develop auto-
antibodies that provoke tissue lesions as a result of their deposi-
tion as immune complexes in renal glomeruli and vessels
(30, 31). To investigate whether GA treatment influences the
production of auto-antibodies, total 1gG, 1gG1 and IgG2a
subclasses against chromatin were tested in the serum of
4-month-old mice (i.e. 1 month post-treatment) by ELISA in
GA- (n=19) and vehicle-treated groups (n= 18). Com-
pared with the vehicle-treated group, total IgG anti-chromatin
titers were decreased in the GA group although a significant
difference was not reached (median = SEM; 19.1 = 4.5 ver-
sus 37.0 = 10.9 IgG U mlI™") (Fig. 3A). Total 1gG anti-
chromatin from both GA- and vehicle-treated groups was
significantly increased when compared with the control con-
sisting of 2-month-old mice (before disease development)
(P < 0.05). To further analyze IgG subtypes, anti-chromatin
IgG1 and IgG2a were tested. IgG1 anti-chromatin titers did
not show any significant difference when GA was compared
with the vehicle-treated group and when both groups were
compared with controls [GA versus vehicle treated versus
control; 97.1 = 20.0 versus 92.3 = 30.6 versus 53.4 =
6.9 U ml™’ (Fig. 3B)]. IgG2a anti-chromatin was significantly
increased in both the GA and vehicle groups when compared
with the control group (IgG2a from GA versus vehicle versus
control; 12.1 + 3.6 versus 21.2 = 55 versus 2.3 + 0.6 U ml™";
GA or vehicle versus control, P < 0.05; GA versus vehicle,
P =ns) (Fig. 3C). 1gG, IgG1 and IgG2a against chromatin
were also tested in the same groups at the age of 5 months
(i.,e. 2 months post-treatment initiation) with similar results
(data not shown). Similar results were obtained when testing
the anti-dsDNA 1gG, 1gG1 and IgG2a (Fig. 3D-F).

Monocytosis observed in (NZB X BXSB)F1 is not modified by
GA treatment

Monocytosis is a unique cellular abnormality associated with
the Yaa mutation (24). Monocytes reach a frequency of 50%
of PBMC in 6- to 8-month-old BXSB male mice and have
been associated with the rapid progression of SLE in this
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Fig. 1. Mortality rate of GA- or vehicle-treated (NZB X BXSB)F1. Mice were injected at the age of 3 months with GA 150 pg s.c. or vehicle only.
Injections were performed once a day until death (dpi = day post-injection). (A) No difference of mortality is observed when GA-treated group is
compared with vehicle-treated group (P = ns). (B) Only mice that developed GN histology-proven graded 3 or 4 were included in the Kaplan—
Meier survival curve (n = number of mice with GN histological grading 3+ or 4+).
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Fig. 2. Assessment of anti-erythrocyte (anti-RBC) antibodies and Hct
1 month post-treatment onset. (A) Anti-RBC antibodies were tested by
the Coombs method following standard procedure. Negative control
consisted in 2-month-old (NZB X BXSB)F1 mice (i.e. before disease
onset). Anti-erythrocyte antibodies were significantly increased 1
month after treatment initiation in both GA- and vehicle-treated
groups when compared with negative control (P < 0.05). When
comparing GA- to vehicle-treated group, no difference was found
(P = ns). Similar results were observed at month 2 post-injections
(data not shown). (B) Hct was tested in both GA- and vehicle-treated
groups after 1 month of treatment. Mice in both treated groups
presented with Hct under 40% but no significant difference was
observed between the groups.

animal model. The level of monocytosis was analyzed by
FACS in both treated groups at the age of 5 and 6 months
(i.e. 2 and 3 months post-treatment initiation; GA n = 6, vehi-
cle treated n = 7). Controls consisted of 2-month-old mice of
the same strain (i.e. before disease onset). The median
value of monocytes expressed in % of total PBMC for GA-
versus vehicle-treated mice was not different at both the
second (median = SEM; 35.4 = 23.8% versus 35.5 + 17.3%)
and the third month post-treatment initiation (median = SEM,;
35.0 + 10.9% versus 47.2 = 16.8%) (Fig. 4A and B). When
compared with the control group (median monocytes =+
SEM; 9.1 = 0.8%), both monocytosis of GA- and vehicle-
treated groups were considerably increased at the two time
points (P < 0.05). Monocytosis was defined as described in
a previous report (25) (dotted line, Fig. 4A and B).

Discussion

Over the last three decades, despite intensive investigation
of the disease and its mechanisms, there has been a lack
of major improvements in the treatment of SLE. Genetic pre-
disposition, environmental factors and complicated interac-
tions within the immune system all contribute to the
complexity of this autoimmune disease. With the character-
ization of several animal models, however, investigators were
able to primarily focus on the mechanisms of action underly-
ing the immunological pathophysiology. Results suggest that
the autoimmune process in lupus-prone animals may be initi-
ated by small numbers of B cells that have a low threshold
for activation against self-antigens (15, 25). Therefore, it
should be therapeutically beneficial to block the initial autor-
eactive responses as well as the activation of the down-
stream cascades. A unique cellular abnormality associated
with the Yaa mutation in the lupus-prone mouse strain used
in this study is an impressive monocytosis (24). The frequency
of monocytes can reach over 50% of all leukocytes in 6- to
8-month-old BXSB male mice. Although the real significance
of monocytosis in lupus disease remains to be determined,

the development of a progressive monocytosis in this strain
is associated with the rapidity of SLE development suggest-
ing that T cells, B cells and auto-antibodies are not the
unique trigger of disease progression.

Recent insights derived from studies on the mechanism of
action of GA show a pivotal role of monocytes in the modula-
tion of the immune system and highlight the importance of
these cells as a target for pharmacologic intervention in au-
toimmune diseases (7, 12, 13). These results suggest that
GA might be useful for autoimmune diseases other than MS.
The pathogenesis of SLE is different from MS, although
some similarities can be found. First, both diseases are con-
sidered to be triggered by a deregulation of the immune
system and no definite putative antigen has been found in
either situation. Both SLE and MS pathogenesis are in part
driven by T cells and APC (32-34) and up to 20% of SLE
have CNS involvement. In addition, anti-nuclear antibodies
are characteristic for SLE and can be found in up to 30% of
MS patients. Preliminary data show that rituximab, a mono-
clonal chimeric antibody directed against CD20 and deplet-
ing B cells, can be beneficial in both SLE and MS (35-37).
A major difference between the two diseases it that SLE,
more than MS, is driven by auto-antibodies and immune
complexes that activate the complement pathway as con-
firmed by kidney histopathology. Contrary to MS, specific
auto-antibodies such as anti-dsDNA can be detected in the
serum of SLE patients. In MS, the pathogenesis is mostly di-
rected by autoreactive Tn1 T cells (34), although antibody-
and complement-mediated demyelination are considered as
possible co-pathogenic factors in >50% of all MS patients (38).

The animal model of SLE and MS also differs in regard to
their pathogenesis although both models are driven by a
strong Tn1 autoimmune response. The pathogenesis of lupus-
prone (NZB X BXSB)F1 mice is mainly mediated by auto-
antibodies and an intrinsic B cell defect (39), whereas chronic
EAE induced in C57BL/6 mice is mostly mediated by gener-
ation of encephalitogenic Tp1 and T,17 T cells, with only a mi-
nor role for auto-antibodies associated with demyelination.
NZB mice are genetically predisposed to develop Coombs-
positive hemolytic anemia, splenomegaly and auto-antibodies
(31). To determine the effect of GA on the progression of
lupus mice’s disease, we used the mouse hybrid (NZB X
BXSB)F1 characterized by the strength and rapidity to de-
velop clinical signals of SLE. In these mice, the disease
onset can be present at 3 months, 50% of the population
generally die within the first 5 months (40).

The hypothesis of our study was that GA, through the
modulation of APC, such as monocytes and subsequently
alteration of the T cell phenotype may inhibit the progression
of the disease. Our data demonstrate that GA treatment initi-
ated at disease onset (8 months of age) and continuously
administered until death exerted no effect on mortality as
the primary clinical readout. Further biological examinations,
including standard controls of disease progression such as
rise of anti-erythrocytes antibodies (Coombs test) and Hct,
showed no significant difference either. Additional measure-
ments of humoral and cellular markers of disease progres-
sion were performed. Anti-chromatin and anti-dsDNA 1gG
can provoke tissue lesions due to their deposition as a form
of immune complex in renal glomeruli and vasculitis (14).
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Fig. 3. Anti-chromatin and anti-dsDNA IgG subclasses examination 1 month after treatment onset. (A) Total anti-chromatin IgG is increased in
the GA-treated group although significance is not reached when compared with vehicle-treated group (P = ns). Difference is significant when
both treated groups are compared with control group (P < 0.05). (B) Anti-chromatin IgG1 subclass is similar in both treated and control groups.
(C) Anti-chromatin IgG2a subclass is increased in both GA- and vehicle-treated groups but inter-group comparison is not different. Similar results
were obtained when IgG, IgG1 and IgG2a against dsDNA (D-F) are tested in the serum 1 month after treatment onset. IgG, IgG1 and 1gG2a
against chromatin and dsDNA were also tested in the same groups 2 months post-treatment initiation with similar results (data not shown).

The influence of GA in switching and synthesis of IgG sub-
classes in EAE mice is unknown. In a clinical study on
GA-treated MS patients, IgG1, and to a lesser extent 1gG2,
were found to be increased in the serum. GA is known to
promote development of Tn2 cell. Thus, in our study, a
GA-dependent modulation of anti-chromatin and anti-dsDNA
IgG subclasses from the pathogenic IgG2a (T,1 dependent)
to the less pathogenic I1gG1 (T2 dependent) subclass was
anticipated. Total anti-chromatin and anti-dsDNA IgG, IgG1
and IgG2a subclasses were tested by ELISA 1 and 2 months
post-treatment initiation. Total 1gG and the predominantly
pathogenic 1gG2a auto-antibodies (41) increased over time
in both GA- and vehicle-treated groups, with no difference
between the two groups.

The progressive monocytosis observed over time in (NZB
X BXSB)F1 mice was not modified in GA-treated mice as

shown on Fig. 4. Recent data showed that GA could pro-
mote type || monocytes that induced Treg specific for a vari-
ety of antigens. Adoptive transfer studies demonstrated that
Treg specific for a foreign antigen could ameliorate EAE,
indicating that neither GA specificity nor recognition of self-
antigen was required for their therapeutic effect (13). A spe-
cific Treg population was not analyzed in our study, but our
results show that the frequency of monocytes was not
altered by GA during lupus disease progression and that
a possible effect of GA on monocytes, such as cytokine pro-
duction or T cell modulation, did not modify the clinical
course of the mice.

Many hypotheses can be raised about the absence of effi-
cacy of GA in these lupus-prone mice. First, the animal model
used in this study is one among several spontaneous, trans-
genic or toxic SLE animal models (42-44). Thus, the failure
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Fig. 4. Monocytosis examination in GA- and vehicle-treated mice after treatment initiation. The median value of monocytes in PBMC for GA-
versus vehicle-treated mice is not different for both the second (A) and the third (B) month post-GA treatment (P = ns). Both treated groups
demonstrate the presence of monocytosis when compared with control group consisting of 2-month-old (NZB X BXSB)F1 mice (P < 0.05).
Dotted line = mean value = 3 SD of monocytes in control group (C57BL/6 mice).

of GA treatment in preventing lupus progression in (NZB X
BXSB)F1 mice cannot be taken as a general inefficacy of
GA treatment in lupus animal models. Second, GA is known
to induce Tp2 T cell that may potentially stimulate B cells to
secrete auto-antibodies and favor SLE progression. Third,
GA treatment was injected at an identical concentration as
performed in EAE models and it cannot be excluded that an-
other dose may provide different results. However, GA has
been effective in the treatment of other models of autoimmune
diseases including uveoretinitis (45), inflammatory bowel dis-
ease (46) and graft rejection (47). In addition to autoimmune
diseases, pre-clinical data also suggest that GA may have
a beneficial effect for Alzheimer’s disease (48, 49). In con-
clusion, this is to the best of our knowledge the first report
assessing the effect of GA in the treatment of a lupus animal
model and results suggest, at least in the (NZB X BXSB)F1
lupus mice model, the absence of efficacy.
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Abbreviations

APC antigen-presenting cell

CNS central nervous system

dsDNA double-stranded DNA

EAE experimental autoimmune encephalomyelitis
GA glatiramer acetate

GN glomerulonephritis

Hct hematocrit

MS multiple sclerosis

S.C. subcutaneous

SLE systemic lupus erythematosus
Treg regulatory T cell

Yaa Y-linked autoimmune acceleration
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