36 research outputs found

    Evaluation of in vitro and in vivo anticancer potential of two 5-acetamido chalcones against breast cancer

    Get PDF
    Two 5’acetamido chalcones, C1 and C2 were synthesized by Claisen-Schmidt condensation method and characterized by IR, LC-MS, 1H NMR and 13C NMR. These compounds were evaluated for anticancer activity in vitro in breast cancer cell lines (MCF-7 and MDA-MB-231) using MTT assay, anti-metastatic assay, apoptotic screening by AO/EB staining and in vivo in N-Methyl-N-nitrosourea (MNU) induced breast carcinoma model. Sprague-Dawley rats with developed tumors (50 mg/kg MNU i.p.) were grouped in four, namely MNU control (0.25 % of CMC p.o.), standard group (doxorubicin 2 mg/kg once in 4 days, i.p.), C1 and C2 groups (50 mg/kg p.o. each). After 21 days of treatments, tumor volume and weight were assessed. Excised tumors were subjected to DNA fragmentation study. MTT assay showed IC50 values of 62.56 and 37.8 µM by for C1 and C2. Both compounds increased apoptotic bodies more than 3 fold compared to normal control in AO/EB staining. Antimeta- static (scratch wound) assay showed a significant (p<0.05) reduction in cell migration after 24 h and 48 h treat- ments compared to normal control. In in vivo studies, tumor weight and tumor volume were significantly (p<0.05) reduced in the doxorubicin group as well as in test groups compared to MNU control. DNA fragmentation assay showed an increase in the number of bands formed in C1 and C2 compared to normal control. Results obtained from in vitro and in vivo studies demonstrated the significant anticancer potentials of C1 and C2

    Selected novel 5'-amino-2'-hydroxy-1,3-diaryl-2-propen-1-ones arrest cell cycle of HCT-116 in G0/G1 phase

    Get PDF
    A series of 5’-amino-2’-hydroxy-1,3-diaryl-2-propen-1-ones (AC1-AC15) were synthesized by Claisen-Schmidt condensation of 5'-acetamido-2’-hydroxy acetophenone with various substituted aromatic aldehydes. The synthesized compounds were characterized by FTIR, 1H NMR and mass spectrometry and evaluated for their selective cytotoxicity using MTT assay on two cancer cell lines namely breast cancer cell line (MCF-7), colon cancer cell line (HCT-116) and one normal kidney epithelial cell line (Vero). Among the tested compounds, AC-10 showed maximum cytotoxic effect on MCF-7 cell line with IC50 value 74.7 ± 3.5 μM. On HCT-116 cells, AC-13 exhibited maximum cytotoxicity with IC50 value 42.1 ± 4.0 μM followed by AC-14 and AC-10 with IC50 values 62 ± 2.3 μM and 95.4 ± 1.7 μM respectively. All tested compounds were found to be safe on Vero cell line with IC50 value more than 200 μM. Based on their highest efficacy on HCT-116, AC-10, AC-13 and AC-14 were selected for mechanistic study on this cell line by evaluating changes nucleomorphological characteristics using acridine orange-ethidium bromide (AOEB) dual stain and by analyzing cell cycle with flow cytometry using propidium iodide stain. In AOEB staining, all three tested compounds showed significant (p < 0.05) increase in percentage apoptotic nuclei compared to control cells, with highest increase in apoptotic nuclei by AC-13 treatment (31 %). Flow cytometric studies showed cell cycle arrest by AC-10 and AC-14 treatment in G0/G1 phase and by AC-13 in G0/G1 and G2/M phase. The study reflected the potential of AC-10, AC-13 and AC-14 to be the lead molecules for further optimization

    Multifaceted link between cancer and inflammation

    Get PDF
    10.1042/BSR20100136Bioscience Reports3211-15BRPT

    Immunogenicity of a recombinant malaria vaccine candidate, domain I + II of AMA-1 ectodomain, from Indian P. falciparum alleles

    No full text
    Among the few vaccine candidates under development, apical membrane antigen (AMA-1) of Plasmodium falciparum is one of the most promising erythrocyte stage malaria vaccine candidates under consideration. The overall structure of AMA-1 appears to be conserved as compared to other surface proteins, but there are numerous amino acid substitutions identified among different P. falciparum isolates. Antisera raised against recombinant AMA-1 or naturally acquired human antibodies were strongly inhibitory only towards homologous parasites. In an attempt to examine the strain specificity of antibodies elicited to AMA-1, we have cloned, expressed and purified two allelic variants of domain I+II of AMA-1 ectodomain from Indian P. falciparum isolates in bacteria. One of these is a new haplotype not reported so far and varies in 18 aa positions from the geographically diverse forms 3D7 and 15 from FVO. Refolded proteins were recognized by a conformation specific monoclonal antibody 4G2.dc1 and hyper immune sera. Immunization of mice and rabbits with the purified proteins using CFA/IFA adjuvant generated high titer polyclonal antibodies. Both the alleles induced high levels of IgG1, IgG2a and IgG2b and a low level of IgG3 in mice. Lymphocyte proliferation assays using splenocytes from immunized mice showed significant proliferative responses and cytokines interleukin-2 (IL-2), IL-4, IL-10 and IFN-γ presence in the culture supernatants. The anti-AMA-1 rabbit antibodies obtained with both the proteins were active in an in vitro parasite growth invasion/inhibition assay. These results suggest that recombinant AMA-1 domain I+II formulated with CFA/IFA adjuvant elicited cellular and humoral responses and is capable of inducing high titer invasion inhibitory antibodies supporting further development of this vaccine candidate

    Genome Analysis of the Meat Starter Culture Bacterium Staphylococcus carnosus TM300▿ †

    No full text
    The Staphylococcus carnosus genome has the highest GC content of all sequenced staphylococcal genomes, with 34.6%, and therefore represents a species that is set apart from S. aureus, S. epidermidis, S. saprophyticus, and S. haemolyticus. With only 2.56 Mbp, the genome belongs to a family of smaller staphylococcal genomes, and the ori and ter regions are asymmetrically arranged with the replichores I (1.05 Mbp) and II (1.5 Mbp). The events leading up to this asymmetry probably occurred not that long ago in evolution, as there was not enough time to approach the natural tendency of a physical balance. Unlike the genomes of pathogenic species, the TM300 genome does not contain mobile elements such as plasmids, insertion sequences, transposons, or STAR elements; also, the number of repeat sequences is markedly decreased, suggesting a comparatively high stability of the genome. While most S. aureus genomes contain several prophages and genomic islands, the TM300 genome contains only one prophage, ΦTM300, and one genomic island, νSCA1, which is characterized by a mosaic structure mainly composed of species-specific genes. Most of the metabolic core pathways are present in the genome. Some open reading frames are truncated, which reflects the nutrient-rich environment of the meat starter culture, making some functions dispensable. The genome is well equipped with all functions necessary for the starter culture, such as nitrate/nitrite reduction, various sugar degradation pathways, two catalases, and nine osmoprotection systems. The genome lacks most of the toxins typical of S. aureus as well as genes involved in biofilm formation, underscoring the nonpathogenic status

    Lack of association of B-type raf kinase V600E mutation with high-risk tumor features and adverse outcome in conventional and follicular variants of papillary thyroid carcinoma

    No full text
    Introduction: Somatic B-type Raf kinase (BRAF) V600E mutation in exon 15 was frequently found in high frequencies associated with papillary thyroid cancer (PTC). The phenotype of these cancers expressed aggressive clinical and pathological features. The present study aimed to assess the prevalence of BRAF V600E mutation among conventional and follicular variants of PTC and its association with aggressive tumor factors and outcome. Study Design: Patients who were operated and received further treatment for PTC during 2012 were included in the study. BRAF V600E mutation analysis was done by extracting genomic DNA from tumor tissue. Results: Of the 59 patients included in the study, 51% harbored BRAF V600E mutation, but the mutation status was not associated with aggressive tumor factors and adverse outcome. Conclusion: BRAF V600E mutation was not significant predictor of aggressive tumor behavior in conventional and follicular variants of PTC

    Expression, purification and characterization of allelic variants of MSP-1<SUB>42</SUB> from Indian Plasmodium falciparum isolates

    No full text
    The C-terminal 19 and 42 kDa fragments of Plasmodium falciparum merozoite surface protein 1 (MSP-1) have shown to be protective in animals against lethal parasite challenge. The MSP-1<SUB>19</SUB> being highly conserved may lack sufficient number of T-cell epitopes in order to elicit a broader response in genetically diverse populations. The inclusion of additional epitopes from the N-terminal MSP-1<SUB>42</SUB> has shown to enhance the protective efficacy of MSP-1<SUB>19</SUB> vaccine. In an attempt to examine the strain specific immunogenicity to MSP-1, we have cloned and expressed three diverse allelic variants of MSP-1<SUB>42</SUB> from Indian P. falciparum isolates in bacteria. Among three alleles, one was extremely rare and not been found before. These purified and refolded recombinant products were recognized by conformation specific monoclonal antibodies and hyper-immune sera. Immunization of mice and rabbits with the purified proteins generated high titer biologically active polyclonal antibodies supporting further development of this vaccine candidate antigen
    corecore