124 research outputs found
Equatorial circular orbits in the Kerr-de Sitter spacetimes
Equatorial motion of test particles in the Kerr-de Sitter spacetimes is
considered. Circular orbits are determined, their properties are discussed for
both the black-hole and naked-singularity spacetimes, and their relevance for
thin accretion discs is established.Comment: 24 pages, 19 figures, REVTeX
Cosmological expansion and local systems: a Lema\^{i}tre-Tolman-Bondi model
We propose a Lema\^{i}tre-Tolman-Bondi system mimicking a two-body system to
address the problem of the cosmological expansion versus local dynamics. This
system is strongly bound but participates in the cosmic expansion and is
exactly comoving with the cosmic substratum
A Study of the S=1/2 Alternating Chain using Multiprecision Methods
In this paper we present results for the ground state and low-lying
excitations of the alternating Heisenberg antiferromagnetic chain. Our
more conventional techniques include perturbation theory about the dimer limit
and numerical diagonalization of systems of up to 28 spins. A novel application
of multiple precision numerical diagonalization allows us to determine
analytical perturbation series to high order; the results found using this
approach include ninth-order perturbation series for the ground state energy
and one magnon gap, which were previously known only to third order. We also
give the fifth-order dispersion relation and third-order exclusive neutron
scattering structure factor for one-magnon modes and numerical and analytical
binding energies of S=0 and S=1 two-magnon bound states.Comment: 16 pages, 9 figures. for submission to Phys.Rev.B. PICT files of figs
available at http://csep2.phy.ornl.gov/theory_group/people/barnes/barnes.htm
Dispersion of Ordered Stripe Phases in the Cuprates
A phase separation model is presented for the stripe phase of the cuprates,
which allows the doping dependence of the photoemission spectra to be
calculated. The idealized limit of a well-ordered array of magnetic and charged
stripes is analyzed, including effects of long-range Coulomb repulsion.
Remarkably, down to the limit of two-cell wide stripes, the dispersion can be
interpreted as essentially a superposition of the two end-phase dispersions,
with superposed minigaps associated with the lattice periodicity. The largest
minigap falls near the Fermi level; it can be enhanced by proximity to a (bulk)
Van Hove singularity. The calculated spectra are dominated by two features --
this charge stripe minigap plus the magnetic stripe Hubbard gap. There is a
strong correlation between these two features and the experimental
photoemission results of a two-peak dispersion in LaSrCuO, and
the peak-dip-hump spectra in BiSrCaCuO. The
differences are suggestive of the role of increasing stripe fluctuations. The
1/8 anomaly is associated with a quantum critical point, here expressed as a
percolation-like crossover. A model is proposed for the limiting minority
magnetic phase as an isolated two-leg ladder.Comment: 24 pages, 26 PS figure
Magnetic and electronic ordering phenomena in the Ru2O6 layer honeycomb lattice compound AgRuO3
The silver ruthenium oxide AgRuO3 consists of honeycomb Ru5 2O 6 layers and can be considered an analogue of SrRu2O6 with a different intercalation. We present measurements of magnetic susceptibility and specific heat on AgRuO3 single crystals, which reveal a sharp antiferromagnetic transition at 342 3 K. The electrical transport in single crystals of AgRuO3 is determined by a combination of activated conduction over an intrinsic semiconducting gap of almost equal to 100 meV and carriers trapped and thermally released from defects. From powder neutron diffraction data a N el type antiferromagnetic structure with the Ru moments along the c axis is derived. Raman spectroscopy on AgRuO3 single crystals and muon spin rotation spectroscopy on powder samples indicate a further weak phase transition or a crossover in the temperature range 125 200 K. The transition does not show up in the magnetic susceptibility, and its origin is argued to be related to defects but cannot be fully clarified. The experimental findings are complemented by density functional theory based electronic structure calculations. It is found that the magnetism in AgRuO3 is similar to that in SrRu2O6, however, with stronger intralayer and weaker interlayer magnetic exchange interaction
Resonant soft x-ray scattering, stripe order, and the electron spectral function in cuprates
We review the current state of efforts to use resonant soft x-ray scattering
(RSXS), which is an elastic, momentum-resolved, valence band probe of strongly
correlated electron systems, to study stripe-like phenomena in copper-oxide
superconductors and related materials. We review the historical progress
including RSXS studies of Wigner crystallization in spin ladder materials,
stripe order in 214-phase nickelates, 214-phase cuprates, and other systems.
One of the major outstanding issues in RSXS concerns its relationship to more
established valence band probes, namely angle-resolved photoemission (ARPES)
and scanning tunneling microscopy (STM). These techniques are widely understood
as measuring a one-electron spectral function, yet a relationship between RSXS
and a spectral function has so far been unclear. Using physical arguments that
apply at the oxygen edge, we show that RSXS measures the square modulus of
an advanced version of the Green's function measured with STM. This indicates
that, despite being a momentum space probe, RSXS is more closely related to STM
than to ARPES techniques.
Finally, we close with some discussion of the most promising future
directions for RSXS. We will argue that the most promising area lies in high
magnetic field studies, particularly of edge states in strongly correlated
heterostructures, and the vortex state in superconducting cuprates, where RSXS
may clarify the anomalous periodicities observed in recent quantum oscillation
experiments.Comment: 15 pages, 1 figure, submitted to special issue of Physica C, "Stripes
and Electronic Liquid Crystals in Strongly Correlated Systems.
- …