71 research outputs found

    ИССЛЕДОВАНИЕ ИМПРЕГНИРОВАНИЯ ОРГАНИЧЕСКИМИ СОЕДИНЕНИЯМИ ОБОЖЖЕННЫХ АНОДОВ АЛЮМИНИЕВЫХ ЭЛЕКТРОЛИЗЕРОВ

    Get PDF
    The results of the investigation into the impregnation (saturation) of the samples of ready roasted anodes promising for aluminum electrolyzers by organic compounds are presented. A procedure of performing this process including the preliminary evacuation, sub- sequent saturation of the samples with organic compounds under the excess external pressure, and further, high-temperature pyrolysis in the lead–bismuth melt is developed. It is established that the developed modification method allows one to increase the corrosion stability of roasted anodes. Приведены результаты исследований процесса импрегнирования (пропитывания) органическими соединениями образ- цов готовых обожженных анодов, перспективных для алюминиевых электролизеров. Разработана методика проведения данного процесса, включающая предварительное вакуумирование, последующее насыщение образцов органическими соединениями под избыточным внешним давлением и, далее, высокотемпературный пиролиз в расплаве свинец–висмут. Установлено, что разработанный метод модифицирования позволяет увеличить коррозионную стойкость обожженных анодов.

    Stromal transcriptional profiles reveal hierarchies of anatomical site, serum response and disease and identify disease specific pathways

    Get PDF
    Synovial fibroblasts in persistent inflammatory arthritis have been suggested to have parallels with cancer growth and wound healing, both of which involve a stereotypical serum response programme. We tested the hypothesis that a serum response programme can be used to classify diseased tissues, and investigated the serum response programme in fibroblasts from multiple anatomical sites and two diseases. To test our hypothesis we utilized a bioinformatics approach to explore a publicly available microarray dataset including rheumatoid arthritis (RA), osteoarthritis (OA) and normal synovial tissue, then extended those findings in a new microarray dataset representing matched synovial, bone marrow and skin fibroblasts cultured from RA and OA patients undergoing arthroplasty. The classical fibroblast serum response programme discretely classified RA, OA and normal synovial tissues. Analysis of low and high serum treated fibroblast microarray data revealed a hierarchy of control, with anatomical site the most powerful classifier followed by response to serum and then disease. In contrast to skin and bone marrow fibroblasts, exposure of synovial fibroblasts to serum led to convergence of RA and OA expression profiles. Pathway analysis revealed three inter-linked gene networks characterising OA synovial fibroblasts: Cell remodelling through insulin-like growth factors, differentiation and angiogenesis through -3 integrin, and regulation of apoptosis through CD44. We have demonstrated that Fibroblast serum response signatures define disease at the tissue level, and that an OA specific, serum dependent repression of genes involved in cell adhesion, extracellular matrix remodelling and apoptosis is a critical discriminator between cultured OA and RA synovial fibroblasts

    The SPARC water vapor assessment II: intercomparison of satellite and ground-based microwave measurements

    Get PDF
    As part of the second SPARC (Stratosphere–troposphere Processes And their Role in Climate) water vapor assessment (WAVAS-II), we present measurements taken from or coincident with seven sites from which ground-based microwave instruments measure water vapor in the middle atmosphere. Six of the ground-based instruments are part of the Network for the Detection of Atmospheric Composition Change (NDACC) and provide datasets that can be used for drift and trend assessment. We compare measurements from these ground-based instruments with satellite datasets that have provided retrievals of water vapor in the lower mesosphere over extended periods since 1996. We first compare biases between the satellite and ground-based instruments from the upper stratosphere to the upper mesosphere. We then show a number of time series comparisons at 0.46 hPa, a level that is sensitive to changes in H2O and CH4 entering the stratosphere but, because almost all CH4 has been oxidized, is relatively insensitive to dynamical variations. Interannual variations and drifts are investigated with respect to both the Aura Microwave Limb Sounder (MLS; from 2004 onwards) and each instrument's climatological mean. We find that the variation in the interannual difference in the mean H2O measured by any two instruments is typically  ∼  1%. Most of the datasets start in or after 2004 and show annual increases in H2O of 0–1 % yr−1. In particular, MLS shows a trend of between 0.5 % yr−1 and 0.7 % yr−1 at the comparison sites. However, the two longest measurement datasets used here, with measurements back to 1996, show much smaller trends of +0.1 % yr−1 (at Mauna Loa, Hawaii) and −0.1 % yr−1 (at Lauder, New Zealand)

    Overview of ASDEX upgrade results in view of ITER and DEMO

    Get PDF
    Experiments on ASDEX Upgrade (AUG) in 2021 and 2022 have addressed a number of critical issues for ITER and EU DEMO. A major objective of the AUG programme is to shed light on the underlying physics of confinement, stability, and plasma exhaust in order to allow reliable extrapolation of results obtained on present day machines to these reactor-grade devices. Concerning pedestal physics, the mitigation of edge localised modes (ELMs) using resonant magnetic perturbations (RMPs) was found to be consistent with a reduction of the linear peeling-ballooning stability threshold due to the helical deformation of the plasma. Conversely, ELM suppression by RMPs is ascribed to an increased pedestal transport that keeps the plasma away from this boundary. Candidates for this increased transport are locally enhanced turbulence and a locked magnetic island in the pedestal. The enhanced D-alpha (EDA) and quasi-continuous exhaust (QCE) regimes have been established as promising ELM-free scenarios. Here, the pressure gradient at the foot of the H-mode pedestal is reduced by a quasi-coherent mode, consistent with violation of the high-n ballooning mode stability limit there. This is suggestive that the EDA and QCE regimes have a common underlying physics origin. In the area of transport physics, full radius models for both L- and H-modes have been developed. These models predict energy confinement in AUG better than the commonly used global scaling laws, representing a large step towards the goal of predictive capability. A new momentum transport analysis framework has been developed that provides access to the intrinsic torque in the plasma core. In the field of exhaust, the X-Point Radiator (XPR), a cold and dense plasma region on closed flux surfaces close to the X-point, was described by an analytical model that provides an understanding of its formation as well as its stability, i.e., the conditions under which it transitions into a deleterious MARFE with the potential to result in a disruptive termination. With the XPR close to the divertor target, a new detached divertor concept, the compact radiative divertor, was developed. Here, the exhaust power is radiated before reaching the target, allowing close proximity of the X-point to the target. No limitations by the shallow field line angle due to the large flux expansion were observed, and sufficient compression of neutral density was demonstrated. With respect to the pumping of non-recycling impurities, the divertor enrichment was found to mainly depend on the ionisation energy of the impurity under consideration. In the area of MHD physics, analysis of the hot plasma core motion in sawtooth crashes showed good agreement with nonlinear 2-fluid simulations. This indicates that the fast reconnection observed in these events is adequately described including the pressure gradient and the electron inertia in the parallel Ohm’s law. Concerning disruption physics, a shattered pellet injection system was installed in collaboration with the ITER International Organisation. Thanks to the ability to vary the shard size distribution independently of the injection velocity, as well as its impurity admixture, it was possible to tailor the current quench rate, which is an important requirement for future large devices such as ITER. Progress was also made modelling the force reduction of VDEs induced by massive gas injection on AUG. The H-mode density limit was characterised in terms of safe operational space with a newly developed active feedback control method that allowed the stability boundary to be probed several times within a single discharge without inducing a disruptive termination. Regarding integrated operation scenarios, the role of density peaking in the confinement of the ITER baseline scenario (high plasma current) was clarified. The usual energy confinement scaling ITER98(p,y) does not capture this effect, but the more recent H20 scaling does, highlighting again the importance of developing adequate physics based models. Advanced tokamak scenarios, aiming at large non-inductive current fraction due to non-standard profiles of the safety factor in combination with high normalised plasma pressure were studied with a focus on their access conditions. A method to guide the approach of the targeted safety factor profiles was developed, and the conditions for achieving good confinement were clarified. Based on this, two types of advanced scenarios (‘hybrid’ and ‘elevated’ q-profile) were established on AUG and characterised concerning their plasma performance

    Impact of a tailored program on the implementation of evidence-based recommendations for multimorbid patients with polypharmacy in primary care practices — results of a cluster-randomized controlled trial

    Get PDF
    Background: Multimorbid patients receiving polypharmacy represent a growing population at high risk for negative health outcomes. Tailoring is an approach of systematic intervention development taking account of previously identified determinants of practice. The aim of this study was to assess the effect of a tailored program to improve the implementation of three important processes of care for this patient group: (a) structured medication counseling including brown bag reviews, (b) the use of medication lists, and (c) structured medication reviews to reduce potentially inappropriate medication. Methods: We conducted a cluster-randomized controlled trial with a follow-up time of 9 months. Participants were general practitioners (GPs) organized in quality circles and participating in a GP-centered care contract of a German health insurance. Patients aged >50 years, suffering from at least 3 chronic diseases, receiving more than 4 drugs, and being at high risk for medication-related events according to the assessment of the treating GP were enrolled. The tailored program consisted of a workshop for GPs and health care assistants, educational materials and reminders for patients, and the elaboration of implementation action plans. The primary outcome was the change in the degree of implementation between baseline and follow-up, measured by a summary score of 10 indicators. The indicators were based on structured surveys with patients and GPs. Results: We analyzed the data of 21 GPs (10 - intervention group, 11 - control group) and 273 patients (130 - intervention group, 143 - control group). The increase in the degree of implementation was 4.2 percentage points (95% confidence interval: −0.3, 8.6) higher in the intervention group compared to the control group (p = 0.1). Two of the 10 indicators were significantly improved in the intervention group: medication counseling (p = 0.017) and brown bag review (p = 0.012). Secondary outcomes showed an effect on patients’ self-reported use of medication lists when buying drugs in the pharmacy (p = 0.03). Conclusions: The tailored program may improve implementation of medication counseling and brown bag review whereas the use of medication lists and medication reviews did not improve. No effect of the tailored program on the combined primary outcome could be substantiated. Due to limitations of the study, results have to be interpreted carefully. The factors facilitating and hindering successful implementation will be examined in a comprehensive process evaluation. Trial registration number ISRCTN34664024, assigned 14/08/201

    Behavior change interventions and policies influencing primary healthcare professionals’ practice—an overview of reviews

    Full text link

    Quasi 18 h wave activity in ground-based observed mesospheric H<sub>2</sub>O over Bern, Switzerland

    No full text
    Observations of oscillations in the abundance of middle-atmospheric trace gases can provide insight into the dynamics of the middle atmosphere. Long-term, high-temporal-resolution and continuous measurements of dynamical tracers within the strato- and mesosphere are rare but would facilitate better understanding of the impact of atmospheric waves on the middle atmosphere. Here we report on water vapor measurements from the ground-based microwave radiometer MIAWARA (MIddle Atmospheric WAter vapor RAdiometer) located close to Bern during two winter periods of 6 months from October to March. Oscillations with periods between 6 and 30 h are analyzed in the pressure range 0.02–2 hPa. Seven out of 12 months have the highest wave amplitudes between 15 and 21 h periods in the mesosphere above 0.1 hPa. The quasi 18 h wave signature in the water vapor tracer is studied in more detail by analyzing its temporal evolution in the mesosphere up to an altitude of 75 km. Eighteen-hour oscillations in midlatitude zonal wind observations from the microwave Doppler wind radiometer WIRA (WInd RAdiometer) could be identified within the pressure range 0.1–1 hPa during an ARISE (Atmospheric dynamics Research InfraStructure in Europe)-affiliated measurement campaign at the Observatoire de Haute-Provence (355 km from Bern) in France in 2013. The origin of the observed upper-mesospheric quasi 18 h oscillations is uncertain and could not be determined with our available data sets. Possible drivers could be low-frequency inertia-gravity waves or a nonlinear wave–wave interaction between the quasi 2-day wave and the diurnal tide

    Visualization strategies for the design of interactive navigable 3-D worlds

    No full text
    corecore