15 research outputs found

    Evolution of an endofungal Lifestyle: Deductions from the Burkholderia rhizoxinica Genome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Burkholderia rhizoxinica </it>is an intracellular symbiont of the phytopathogenic zygomycete <it>Rhizopus microsporus</it>, the causative agent of rice seedling blight. The endosymbiont produces the antimitotic macrolide rhizoxin for its host. It is vertically transmitted within vegetative spores and is essential for spore formation of the fungus. To shed light on the evolution and genetic potential of this model organism, we analysed the whole genome of <it>B. rhizoxinica </it>HKI 0454 - a type strain of endofungal <it>Burkholderia </it>species.</p> <p>Results</p> <p>The genome consists of a structurally conserved chromosome and two plasmids. Compared to free-living <it>Burkholderia </it>species, the genome is smaller in size and harbors less transcriptional regulator genes. Instead, we observed accumulation of transposons over the genome. Prediction of primary metabolic pathways and transporters suggests that endosymbionts consume host metabolites like citrate, but might deliver some amino acids and cofactors to the host. The rhizoxin biosynthesis gene cluster shows evolutionary traces of horizontal gene transfer. Furthermore, we analysed gene clusters coding for nonribosomal peptide synthetases (NRPS). Notably, <it>B. rhizoxinica </it>lacks common genes which are dedicated to quorum sensing systems, but is equipped with a large number of virulence-related factors and putative type III effectors.</p> <p>Conclusions</p> <p><it>B. rhizoxinica </it>is the first endofungal bacterium, whose genome has been sequenced. Here, we present models of evolution, metabolism and tools for host-symbiont interaction of the endofungal bacterium deduced from whole genome analyses. Genome size and structure suggest that <it>B. rhizoxinica </it>is in an early phase of adaptation to the intracellular lifestyle (genome in transition). By analysis of tranporters and metabolic pathways we predict how metabolites might be exchanged between the symbiont and its host. Gene clusters for biosynthesis of secondary metabolites represent novel targets for genomic mining of cryptic natural products. <it>In silico </it>analyses of virulence-associated genes, secreted proteins and effectors might inspire future studies on molecular mechanisms underlying bacterial-fungal interaction.</p

    Rhizonin, the First Mycotoxin Isolated from the Zygomycota, Is Not a Fungal Metabolite but Is Produced by Bacterial Endosymbionts

    No full text
    Rhizonin is a hepatotoxic cyclopeptide isolated from cultures of a fungal Rhizopus microsporus strain that grew on moldy ground nuts in Mozambique. Reinvestigation of this fungal strain by a series of experiments unequivocally revealed that this “first mycotoxin from lower fungi” is actually not produced by the fungus. PCR experiments and phylogenetic studies based on 16S rRNA gene sequences revealed that the fungus is associated with bacteria belonging to the genus Burkholderia. By transmission electron microscopy, the bacteria were localized within the fungal cytosol. Toxin production and the presence of the endosymbionts were correlated by curing the fungus with an antibiotic, yielding a nonproducing, symbiont-free phenotype. The final evidence for a bacterial biogenesis of the toxin was obtained by the successful fermentation of the endosymbiotic bacteria in pure culture and isolation of rhizonin A from the broth. This finding is of particular interest since Rhizopus microsporus and related Rhizopus species are frequently used in food preparations such as tempeh and sufu

    Distinctive prokaryotic microbiomes in sympatric plant roots from a Yucatan cenote

    Get PDF
    Objective!#!Cenotes are flooded caves in Mexico's Yucatan peninsula. Many cenotes are interconnected in an underground network of pools and streams forming a vast belowground aquifer across most of the peninsula. Many plants in the peninsula grow roots that reach the cenotes water and live submerged in conditions similar to hydroponics. Our objective was to study the microbial community associated with these submerged roots of the Sac Actun cenote. We accomplished this objective by profiling the root prokaryotic community using 16S rRNA gene amplification and sequencing.!##!Results!#!We identified plant species by DNA barcoding the total genomic DNA of each root. We found a distinctive composition of the root and water bacterial and archaeal communities. Prokaryotic diversity was higher in all plant roots than in the surrounding freshwater, suggesting that plants in the cenotes may attract and select microorganisms from soil and freshwater, and may also harbor vertically transmitted lineages. The reported data are of interest for studies targeting biodiversity in general and root-microbial ecological interactions specifically

    Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species.

    No full text
    Desert plants are hypothesized to survive the environmental stress inherent to these regions in part thanks to symbioses with microorganisms, and yet these microbial species, the communities they form, and the forces that influence them are poorly understood. Here we report the first comprehensive investigation of the microbial communities associated with species of Agave, which are native to semiarid and arid regions of Central and North America and are emerging as biofuel feedstocks. We examined prokaryotic and fungal communities in the rhizosphere, phyllosphere, leaf and root endosphere, as well as proximal and distal soil samples from cultivated and native agaves, through Illumina amplicon sequencing. Phylogenetic profiling revealed that the composition of prokaryotic communities was primarily determined by the plant compartment, whereas the composition of fungal communities was mainly influenced by the biogeography of the host species. Cultivated A.&nbsp;tequilana exhibited lower levels of prokaryotic diversity compared with native agaves, although no differences in microbial diversity were found in the endosphere. Agaves shared core prokaryotic and fungal taxa known to promote plant growth and confer tolerance to abiotic stress, which suggests common principles underpinning Agave-microbe interactions
    corecore