27,667 research outputs found

    Cusp-scaling behavior in fractal dimension of chaotic scattering

    Full text link
    A topological bifurcation in chaotic scattering is characterized by a sudden change in the topology of the infinite set of unstable periodic orbits embedded in the underlying chaotic invariant set. We uncover a scaling law for the fractal dimension of the chaotic set for such a bifurcation. Our analysis and numerical computations in both two- and three-degrees-of-freedom systems suggest a striking feature associated with these subtle bifurcations: the dimension typically exhibits a sharp, cusplike local minimum at the bifurcation.Comment: 4 pages, 4 figures, Revte

    Dissipative chaotic scattering

    Get PDF
    We show that weak dissipation, typical in realistic situations, can have a metamorphic consequence on nonhyperbolic chaotic scattering in the sense that the physically important particle-decay law is altered, no matter how small the amount of dissipation. As a result, the previous conclusion about the unity of the fractal dimension of the set of singularities in scattering functions, a major claim about nonhyperbolic chaotic scattering, may not be observable.Comment: 4 pages, 2 figures, revte

    Effects of Germination on NA +

    Full text link

    Validity of numerical trajectories in the synchronization transition of complex systems

    Full text link
    We investigate the relationship between the loss of synchronization and the onset of shadowing breakdown {\it via} unstable dimension variability in complex systems. In the neighborhood of the critical transition to strongly non-hyperbolic behavior, the system undergoes on-off intermittency with respect to the synchronization state. There are potentially severe consequences of these facts on the validity of the computer-generated trajectories obtained from dynamical systems whose synchronization manifolds share the same non-hyperbolic properties.Comment: 4 pages, 4 figure

    Bailout Embeddings, Targeting of KAM Orbits, and the Control of Hamiltonian Chaos

    Get PDF
    We present a novel technique, which we term bailout embedding, that can be used to target orbits having particular properties out of all orbits in a flow or map. We explicitly construct a bailout embedding for Hamiltonian systems so as to target KAM orbits. We show how the bailout dynamics is able to lock onto extremely small KAM islands in an ergodic sea.Comment: 3 figures, 9 subpanel
    corecore