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Bailout embeddings, targeting of invariant tori, and the control of Hamiltonian chaos
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We introduce a technique, which we term bailout embedding, that can be used to target orbits having
particular properties out of all orbits in a flow or map. We explicitly construct a bailout embedding for
Hamiltonian systems so as to target invariant tori. We show how the bailout dynamics are able to lock onto
extremely small regular islands in a chaotic sea.
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Control of chaos in nonlinear dynamical systems has beeargodic ones. Fully integrable systems are characterized by
achieved by applying small perturbations that effectivelydynamics unfolding on invariant tori. The KAM theorem as-
change the dynamics of the system around the region—serts that, as a parameter taking the system away from inte-
typically a periodic orbit—that one wishes to stabilizg. grability is increased, these tori break and give rise to chaotic
This method has been successful in dissipative systems, brggions in a precise sequence; for any particular value of this
its extensions to control and targeting in Hamiltonian sys-parameter in a neighborhood of the integrable case, there are
tems[2-11] have met various difficulties not present in the surviving tori. The problem with finding them is that, the
dissipative case: the absence of attracting sets, for instancgynamics being volume preserving, merely evolving trajec-
makes it hard to stabilize anything. In addition, these methtories either forward or backward does not give us conver-
ods require that one know beforehand what one wants to dgence onto tor[12], and since, for large values of the non-
in particular, the orbit to be stabilized may have to be knownlinearity, they cover a very small measure of the phase space,
rather accurately in advance. locating them becomes an extremely difficult problem.

In this Rapid Communication we present a technique alMoreover, there is the further problem that even if we start
lowing us to control Hamiltonian chaos, in such a way as toon an island, we should be able to recognize it as such. In
keep the original dynamics intact, but that shifts the stabilityfact, several sophisticated analytical and semianalytical tech-
of different kinds of orbits in the dynamics. We do so by niques have had to be developed to assist in the search and
embedding our Hamiltonian system within a larger spacecharacterization of KAM tori in highly nonlinear Hamil-
meaning we augment the number of degrees of freedonipnian systemssee, for instancd,13]). A bailout embedding
keeping an intact copy of the original system on one privi-solves these problems by transforming the KAM trajectories
leged slice; all of the control is achieved through use of thanto global attractors of the embedded system; finding them
perpendicular directions to this intact copy. We call thisis now independent of the choice of initial conditions.
method a bailout embedding for reasons that will promptly Our technique is based upon the dynamics of a small neu-
become clear. We apply the technique to an extremely harttally buoyant sphere—a passive scalar—in an incompress-
and hitherto close to intractable problem in chaos control ofble fluid flow u [14]. Under assumptions allowing us to
Hamiltonian systems: selecting small KoI'mogorov-Arnol’'d- retain only the Bernoulli, Stokes drag, and Taylor added
Moser(KAM ) islands within chaotic seas in systems that aremass contributions to the force exerted by the fluid on the
almost ergodic. We show below how our technique is able tsphere, the equation of motion for the sphere at the position
find and render asymptotically stable minute islands of ordex is
within a map. While formerly this could be done by sophis- d . .
ticated algorithms on the basis of complex logic, our method GIXT UG ]== (A +Vu)- [x—u(x)] D
distills the complexity of this calculation into a simple,
forward-iterated dynamical system. Thus our method allows© that the difference between the particle velocity and the
us to stabilize KAM islands without knowing their locations Velocity of the surrounding fluid is exponentially damped
in advance. with damping coming from— (A +Vu). However, in the

A classical prob'em in Hamiltonian dynamics is |Ocating case in Wh|Ch the ﬂOW gradientS reaCh the magnitude Of the
invariant or KAM tori. Hamiltonian Systems exist between viscous drag CoefﬁCient, there is the pOSSlblllty that around

two opposite extremes, of fully integrable systems and fullyhyperbolic stagnation points the Jacobian maWiu may
acquire a positive eigenvalue in excess of the drag coeffi-
cient. In these instances, the trajectories of these passive sca-

*URL: http://lec.ugr.esjulyan. Electronic address: lars, instead of converging exponentially onte u, detach
julyan@lec.ugr.es from such trajectories. The result is that the passive scalars
TURL: http://asterion.rockefeller.edu/. Electronic address: explore practically all of the flow, but tend to avoid regions

marcelo@sur.rockefeller.edu of high shear.
*URL: http:/www.imedea.uib.espiro. Electronic address: Equation(1) is but one instance of a more general struc-
piro@imedea.uib.es ture. Let us consider a flow of the forr=f(x). If we take
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FIG. 1. The bailout embedding can target KAM orbits in the standard mdpg=&. 100 random initial conditions were chosen and
iterated for 10 000 steps; the next 1000 iterations are shown on the unit t@r@riginal map,(b) A=1, (¢c) A\=0.6,(d) A=0.5.

its time derivative, we obtain a different flow= f’ (x)x. It d . .

is different because, being second order, it exists in a larger g X F)]= =k ()[x= 1)1, )
space and has many solutions that are not solutions of the

smaller one. Still, the original equation is contained within

the larger system, in the sense that every solutionx of where k(x)<0 on a set of orbits that are unwanted, and
=f(x) is a solution ofx=f'(x)x. We may say thatx  «(x)>0 otherwise. Thus the natural behavior of a bailout
—f(x) is embedded withirk=1f'(x)x. There are infinitely embedding is that the trajectories in the full system tend to
many ways to embed: for example=f'(x)f(x) is also an detach or bail out from the embedded subsystem into the
embedding, but it is ciearly inequiv:':llent to the first. larger space, where they bounpe around. If these orbits _reach

Of course, embedding a system changes notions of stabif: stable region of th_e_embedd|ng(x)>0, they once again
. I . . collapse onto the original dynamical system. In this way we
ity, because stability refers to perturbations, and in a larger ; o ) o
system there are all of the old perturbations plus a batch of ! create a larger version of the dynamics in Wh'Ch speC|.f|c
new ones. So, even though all the solutions of the origina?e'[S of_orblts are remo"ed from the asymptotic set, while
system are preserved, by adding new directions away frorRreserving the dynamics of another set of orbits—the _vvanted
the old solutions we may transform formerly stable soIutionsgr;arggtreglgnse;?; it;c}rgc;fr;f((;f)tfe_?;lirgef(; d\,)\l,zi?;lgal Sys-
into_unstable ones in the larger setting; see, for eXampledenlotes the dgrivative at the o'_tanalo o)ijs’to the flljid
studies of the manifold bubbling transitiga5]. The trivial : ; pomtanalog
way to embed a system is through a cross product; for inglynamlcs of a passive scalar described by @. these dy-

. o . ’ namics were shown ifiL4] to detach from saddle points and
stancex=1(x), xe M, is embedded withinlx Tt as other unstable regions in conservative dynamics.
x=f(x)+g(xy),

y=ay, ()

where g(x,y) is arbitrary except for requiring thaj(x,0) "
=0, which guarantees that for=0 we have the original i
system. Ifa<0 theny always dies out, so we necessarily
recover the original object; in this case, we can call the em-
bedding itself stable, in the sense that any motion away from
the embedded object takes us back to it. Both ofdéeva-

tive embeddingsn the previous paragraph were unstable; -
stable versions can be constructed rather simply, for instance
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of which the previous examples were tke=0 limit. This

! (W > | FIG. 2. Random initial conditions eventually collapse onto the
embedding ensures that for any initial condition the distanc@yiginal dynamics. Here we plot the fraction of initial conditions

between the actual trajectory and the embedding diminishesich thagx,.,— f(x,)|>10'° as a function of the number of it-
exponentially with time. Equatio(8) begins to resemble Eq. erations elapsed, for 8000 random initial conditions in the standard

(1).

map atk=2. The three curves correspond to caé®s(c), and(d)
We define aailout embeddings one of the form

in Fig. 1.
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FIG. 3. The bailout process can find extremely small KAM islands. The standard méap-forhas a chaotic sea covering almost the

entire torus, except for a tiny period-2 KAM torus near position (0, 0.6774). 1000 random initial conditions were chosen and iterated for
20000 steps; the next 1000 iterations are shd@nOriginal map,(b) A=1.4,(c) A\=1.3,(d) A=1.2.

It is not hard to extend flow bailout, E¢4), to maps in  fectively expelled from the chaotic regions to settle finally in
the obvious fashion. Given a mag . ,=T(x,) the bailout the safely elliptic KAM islands. This process can be seen
embedding is given by clearly in Fig. 1. As the value of is decreased, the number

Xns2— T(Xns 1) =KXn) [ Xns1— T(X) 1, (5) of trajectories starting from random initial conditions that

provided thatK(x)|>1 over the unwanted sefin the map ever;t_ually settle into the KAM tori rzncreaseks; see Flgr.]_Zh.
system, almost any expression written for the flow translates 1S Process is sensitive enough to work even at hitherto
to something close to an exponential; in particular, stabilityNtractably high nonlinearities. Fér=7, the standard map is

eigenvalues have to be negative in the flow case to represe@fmost ergodic: it covers nearly the entire torus with a single

stability, while they have to be smaller than 1 in absolutechaotic orbit. Only a tiny island of irreductible order resists

value in the map caseThe particular choice of the gradient this invasion'. It is located :315round (0,0.6774) and covers an

as the bailout functior(x) = — (A + 4,f) in a flow translates €& approximately a210"> part of the torus. Thus, from

in the map setting t& (x) =&, T. random initial conditions, one _vvould expect to see it _only
A classical test bed of Hamiltonian systems is the stanONC€ évery 50000 attempts. Figure 3 shows how easily the

dard map, an area-preserving map introduced by ChirikoWailout mgthoq finds this island from simple forward.iterates.

and Taylor. The standard map is given by A Hamiltonian system does not usually just satisfy vol-
ume conservation, but also will conserve the Hamiltonian

itself. Given a flowx=f(x) with a conserved quantitf

=0, thenf-JE=0. However, building a bailout embedding

by the procedure above does not lead to dynamics that sat-

Ynr1=Yn T Xn+a, ® isfy E=0, because the bailout embedding should be-2

wherek is the parameter controlling integrability. In order to dimensional. This is clearly undesirable in the case of Hamil-
embed the standard map, we only need to replagedK (x) ~ tonian systems, so we show now how to derive a bailout
in Eq. (5) with the appropriate expressiorEstems directly €mbedding that will obey a conservation law. The bailout
from Eq. (6) and, in accordance with the previous defini- €Juation can be written
i K . . .
tions, K(x) becomes x=(af =N\)-(x—f)+af-x. 8

1 kcog2my,)

K(x)= 1 kcog2mwy,)+1)’ () We need to correct this acceleration so that it stays on the

Notice that due to the area-preserving nature of the standa®fcond tangent space of the=0 surface. Let us call the raw
map, the two eigenvalues of the derivative matrix must mul-bailout acceleration. The second derivative has to satisfy
tiply to 1. If they are complex, this means that both have ark. 9E+ x- 9JE-x=0, so we can modify to

absolute value of 1, while if they are real, generically one of

them will be larger than 1 and the other smaller. We can then . u-JE . :

separate the phase space into elliptic and hyperbolic regions X=u- |E|2 JE— |5E|2X' JIE-X. ©)
corresponding to each of these two cases. If a trajectory of

the original map lies entirely on the elliptic regions, the over-This equation, given that we start on JE=0, will then

all factor expt-\) will damp any small perturbation away preserve this property.

from it in the embedded system. But for chaotic trajectories, We have presented a method for control and targeting of
which inevitably must visit some hyperbolic regions, therechaos in nonlinear dynamical systems: the bailout embed-
exists a value of\ such that perturbations away from a ding. While potentially useful in any dynamical-system set-
standard-map trajectory are amplified instead of dying out ining, this method is especially suited to Hamiltonian systems.
the embedding. As a consequence, such trajectories are éfnlike other chaos-control strategies, this method does not

k .
Xp+1=Xnt Esm(eryn),
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