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Bailout embeddings, targeting of invariant tori, and the control of Hamiltonian chaos
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We introduce a technique, which we term bailout embedding, that can be used to target orbits having
particular properties out of all orbits in a flow or map. We explicitly construct a bailout embedding for
Hamiltonian systems so as to target invariant tori. We show how the bailout dynamics are able to lock onto
extremely small regular islands in a chaotic sea.
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Control of chaos in nonlinear dynamical systems has b
achieved by applying small perturbations that effectiv
change the dynamics of the system around the regio
typically a periodic orbit—that one wishes to stabilize@1#.
This method has been successful in dissipative systems
its extensions to control and targeting in Hamiltonian s
tems@2–11# have met various difficulties not present in th
dissipative case: the absence of attracting sets, for insta
makes it hard to stabilize anything. In addition, these me
ods require that one know beforehand what one wants to
in particular, the orbit to be stabilized may have to be kno
rather accurately in advance.

In this Rapid Communication we present a technique
lowing us to control Hamiltonian chaos, in such a way as
keep the original dynamics intact, but that shifts the stabi
of different kinds of orbits in the dynamics. We do so b
embedding our Hamiltonian system within a larger spa
meaning we augment the number of degrees of freed
keeping an intact copy of the original system on one pr
leged slice; all of the control is achieved through use of
perpendicular directions to this intact copy. We call th
method a bailout embedding for reasons that will promp
become clear. We apply the technique to an extremely h
and hitherto close to intractable problem in chaos contro
Hamiltonian systems: selecting small Kol’mogorov-Arnol’
Moser~KAM ! islands within chaotic seas in systems that
almost ergodic. We show below how our technique is able
find and render asymptotically stable minute islands of or
within a map. While formerly this could be done by soph
ticated algorithms on the basis of complex logic, our meth
distills the complexity of this calculation into a simple
forward-iterated dynamical system. Thus our method allo
us to stabilize KAM islands without knowing their location
in advance.

A classical problem in Hamiltonian dynamics is locatin
invariant or KAM tori. Hamiltonian systems exist betwee
two opposite extremes, of fully integrable systems and fu
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ergodic ones. Fully integrable systems are characterized
dynamics unfolding on invariant tori. The KAM theorem a
serts that, as a parameter taking the system away from
grability is increased, these tori break and give rise to cha
regions in a precise sequence; for any particular value of
parameter in a neighborhood of the integrable case, there
surviving tori. The problem with finding them is that, th
dynamics being volume preserving, merely evolving traje
tories either forward or backward does not give us conv
gence onto tori@12#, and since, for large values of the no
linearity, they cover a very small measure of the phase sp
locating them becomes an extremely difficult proble
Moreover, there is the further problem that even if we st
on an island, we should be able to recognize it as such
fact, several sophisticated analytical and semianalytical te
niques have had to be developed to assist in the search
characterization of KAM tori in highly nonlinear Hamil
tonian systems~see, for instance,@13#!. A bailout embedding
solves these problems by transforming the KAM trajector
into global attractors of the embedded system; finding th
is now independent of the choice of initial conditions.

Our technique is based upon the dynamics of a small n
trally buoyant sphere—a passive scalar—in an incompre
ible fluid flow u @14#. Under assumptions allowing us t
retain only the Bernoulli, Stokes drag, and Taylor add
mass contributions to the force exerted by the fluid on
sphere, the equation of motion for the sphere at the posi
x is

d

dt
@ ẋ2u~x!#52~lI 1“u!•@ ẋ2u~x!# ~1!

so that the difference between the particle velocity and
velocity of the surrounding fluid is exponentially dampe
with damping coming from2(l1“u). However, in the
case in which the flow gradients reach the magnitude of
viscous drag coefficient, there is the possibility that arou
hyperbolic stagnation points the Jacobian matrix“u may
acquire a positive eigenvalue in excess of the drag coe
cient. In these instances, the trajectories of these passive
lars, instead of converging exponentially ontoẋ5u, detach
from such trajectories. The result is that the passive sca
explore practically all of the flow, but tend to avoid region
of high shear.

Equation~1! is but one instance of a more general stru
ture. Let us consider a flow of the formẋ5 f (x). If we take
©2002 The American Physical Society03-1
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FIG. 1. The bailout embedding can target KAM orbits in the standard map atk52. 100 random initial conditions were chosen a
iterated for 10 000 steps; the next 1000 iterations are shown on the unit torus.~a! Original map,~b! l51, ~c! l50.6, ~d! l50.5.
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its time derivative, we obtain a different flow,ẍ5 f 8(x) ẋ. It
is different because, being second order, it exists in a la
space and has many solutions that are not solutions of
smaller one. Still, the original equation is contained with
the larger system, in the sense that every solution oẋ

5 f (x) is a solution of ẍ5 f 8(x) ẋ. We may say thatẋ
5 f (x) is embedded withinẍ5 f 8(x) ẋ. There are infinitely
many ways to embed; for example,ẍ5 f 8(x) f (x) is also an
embedding, but it is clearly inequivalent to the first.

Of course, embedding a system changes notions of st
ity, because stability refers to perturbations, and in a lar
system there are all of the old perturbations plus a batc
new ones. So, even though all the solutions of the orig
system are preserved, by adding new directions away f
the old solutions we may transform formerly stable solutio
into unstable ones in the larger setting; see, for exam
studies of the manifold bubbling transition@15#. The trivial
way to embed a system is through a cross product; for
stance,ẋ5 f (x), xPM, is embedded withinM3R as

ẋ5 f ~x!1g~x,y!,

ẏ5ay, ~2!

where g(x,y) is arbitrary except for requiring thatg(x,0)
[0, which guarantees that fory50 we have the origina
system. Ifa,0 theny always dies out, so we necessar
recover the original object; in this case, we can call the e
bedding itself stable, in the sense that any motion away fr
the embedded object takes us back to it. Both of thederiva-
tive embeddingsin the previous paragraph were unstab
stable versions can be constructed rather simply, for insta

d

dt
@ ẋ2 f ~x!#52k@ ẋ2 f ~x!#, ~3!

of which the previous examples were thek50 limit. This
embedding ensures that for any initial condition the dista
between the actual trajectory and the embedding diminis
exponentially with time. Equation~3! begins to resemble Eq
~1!.

We define abailout embeddingas one of the form
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d

dt
@ ẋ2 f ~x!#52k~x!@ ẋ2 f ~x!#, ~4!

where k(x),0 on a set of orbits that are unwanted, a
k(x).0 otherwise. Thus the natural behavior of a bailo
embedding is that the trajectories in the full system tend
detach or bail out from the embedded subsystem into
larger space, where they bounce around. If these orbits re
a stable region of the embedding,k(x).0, they once again
collapse onto the original dynamical system. In this way
can create a larger version of the dynamics in which spec
sets of orbits are removed from the asymptotic set, wh
preserving the dynamics of another set of orbits—the wan
or targeted one—as attractors of the enlarged dynamical
tem. For the special choice ofk(x)52(l1]xf ), where]x
denotes the derivative at the pointx, analogous to the fluid
dynamics of a passive scalar described by Eq.~1!, these dy-
namics were shown in@14# to detach from saddle points an
other unstable regions in conservative dynamics.

FIG. 2. Random initial conditions eventually collapse onto t
original dynamics. Here we plot the fraction of initial condition
such thatuxn112 f (xn)u.10210 as a function of the number of it
erations elapsed, for 8000 random initial conditions in the stand
map atk52. The three curves correspond to cases~b!, ~c!, and~d!
in Fig. 1.
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FIG. 3. The bailout process can find extremely small KAM islands. The standard map fork57 has a chaotic sea covering almost t
entire torus, except for a tiny period-2 KAM torus near position (0, 0.6774). 1000 random initial conditions were chosen and iter
20 000 steps; the next 1000 iterations are shown.~a! Original map,~b! l51.4, ~c! l51.3, ~d! l51.2.
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It is not hard to extend flow bailout, Eq.~4!, to maps in
the obvious fashion. Given a mapxn115T(xn) the bailout
embedding is given by

xn122T~xn11!5K~xn!@xn112T~xn!#, ~5!

provided thatuK(x)u.1 over the unwanted set.~In the map
system, almost any expression written for the flow transla
to something close to an exponential; in particular, stabi
eigenvalues have to be negative in the flow case to repre
stability, while they have to be smaller than 1 in absolu
value in the map case.! The particular choice of the gradien
as the bailout functionk(x)52(l1]xf ) in a flow translates
in the map setting toK(x)5e2l]xT.

A classical test bed of Hamiltonian systems is the st
dard map, an area-preserving map introduced by Chiri
and Taylor. The standard map is given by

xn115xn1
k

2p
sin~2pyn!,

yn115yn1xn11 , ~6!

wherek is the parameter controlling integrability. In order
embed the standard map, we only need to replaceT andK(x)
in Eq. ~5! with the appropriate expressions.T stems directly
from Eq. ~6! and, in accordance with the previous defin
tions,K(x) becomes

K~x!5S 1 k cos~2pyn!

1 k cos~2pyn!11D . ~7!

Notice that due to the area-preserving nature of the stan
map, the two eigenvalues of the derivative matrix must m
tiply to 1. If they are complex, this means that both have
absolute value of 1, while if they are real, generically one
them will be larger than 1 and the other smaller. We can t
separate the phase space into elliptic and hyperbolic reg
corresponding to each of these two cases. If a trajector
the original map lies entirely on the elliptic regions, the ov
all factor exp(2l) will damp any small perturbation awa
from it in the embedded system. But for chaotic trajectori
which inevitably must visit some hyperbolic regions, the
exists a value ofl such that perturbations away from
standard-map trajectory are amplified instead of dying ou
the embedding. As a consequence, such trajectories ar
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fectively expelled from the chaotic regions to settle finally
the safely elliptic KAM islands. This process can be se
clearly in Fig. 1. As the value ofl is decreased, the numbe
of trajectories starting from random initial conditions th
eventually settle into the KAM tori increases; see Fig. 2.

This process is sensitive enough to work even at hithe
intractably high nonlinearities. Fork57, the standard map is
almost ergodic: it covers nearly the entire torus with a sin
chaotic orbit. Only a tiny island of irreductible order resis
this invasion. It is located around (0, 0.6774) and covers
area approximately a 231025 part of the torus. Thus, from
random initial conditions, one would expect to see it on
once every 50 000 attempts. Figure 3 shows how easily
bailout method finds this island from simple forward iterate

A Hamiltonian system does not usually just satisfy vo
ume conservation, but also will conserve the Hamilton
itself. Given a flow ẋ5 f (x) with a conserved quantityE
[0, then f •]E50. However, building a bailout embeddin
by the procedure above does not lead to dynamics that
isfy Ė[0, because the bailout embedding should be 2n22
dimensional. This is clearly undesirable in the case of Ham
tonian systems, so we show now how to derive a bail
embedding that will obey a conservation law. The bailo
equation can be written

ẍ5~] f 2l!•~ ẋ2 f !1] f • ẋ. ~8!

We need to correct this acceleration so that it stays on
second tangent space of theE[0 surface. Let us call the raw
bailout accelerationu. The second derivativeẍ has to satisfy
ẍ•]E1 ẋ•]]E• ẋ50, so we can modifyu to

ẍ5u2
u•]E

u]Eu2
]E2

]E

u]Eu2
ẋ•]]E• ẋ. ~9!

This equation, given that we start onẋ•]E50, will then
preserve this property.

We have presented a method for control and targeting
chaos in nonlinear dynamical systems: the bailout emb
ding. While potentially useful in any dynamical-system s
ting, this method is especially suited to Hamiltonian system
Unlike other chaos-control strategies, this method does
3-3
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obliterate the original dynamics of the system, but rat
preserves it in a privileged slice of phase space embedde
a higher-dimensional space, and merely shifts around the
bility of its orbits. A suitable choice of a bailout functio
allows this strategy to target a complex set of orbits. We h
demonstrated, in particular, the targeting of KAM orbits,
case well known from classical studies to be especially h
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